Optimization of vibration control using a hybrid scheme with sliding-mode and positive position feedback

被引:1
|
作者
Enriquez-Zarate, J. [1 ,7 ]
Gomez-Penate, S. [2 ]
Hernandez, C. [3 ]
Villarreal-Valderrama, Francisco [4 ]
Velazquez, R. [5 ]
Trujillo, Leonardo [6 ]
机构
[1] AP Engn Innovac Tecnol Energias SA CV, Ixtepec, Oaxaca, Mexico
[2] Tecnol Nacl Mexico, Inst Tecnol Tuxtla Gutierrez, Tuxtla Gutierrez, Mexico
[3] IIMAS UNAM, Dept Comp, Mexico City, Mexico
[4] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Monterrey, Nuevo Leon, Mexico
[5] Univ Panamer, Fac Ingn, Aguascalientes, Aguascalientes, Mexico
[6] Tecnol Nacl Mexico, IT Tijuana, Tijuana 22414, Mexico
[7] AP Engn Innovac Tecnol Energias SA CV, Sexta Secc, Cd Ixtepec, Oaxaca, Mexico
来源
关键词
active vibration control; nonlinear system; optimization; positive position feedback; sliding mode control; SUPPRESSION; SYSTEM;
D O I
10.1002/oca.3086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the design of a nonlinear hybrid controller for an underactuated Duffing oscillator with 2 degrees of freedom. The main control purpose is to reduce the frequency-response to specific resonant-frequencies while maintaining its robustness to external disturbances. The resulting hybrid controller uses sliding mode control (SMC) with a positive position feedback (PPF) scheme. This is structured such that the SMC provides system robustness and tracking, while the PPF allows damping specific resonant frequencies. The system was evaluated using frequency sweeps in terms of acceleration in the second degree of freedom. In this case, the control input is applied through the first degree of freedom. Moreover, multi-objective optimization is implemented to tune of the control parameters. Simulation results show that the system response to external vibrations can be reduced up to 83.88% by using the proposed PPF + SMC scheme.
引用
收藏
页码:1030 / 1044
页数:15
相关论文
共 50 条
  • [1] Optimal sliding-mode control scheme for the position tracking servo control system
    Jing, Jiang
    ROBOTICS, CONTROL AND MANUFACTURING TECHNOLOGY, 2008, : 47 - 51
  • [2] Optimal sliding-mode control scheme for the position tracking servo system
    Jing, Jiang
    Yingying, Ye
    Yanxian, Fang
    WSEAS Transactions on Systems, 2008, 7 (05): : 435 - 444
  • [3] Stability analysis of sliding-mode feedback control
    Clarke, Francis H.
    Vinter, Richard B.
    CONTROL AND CYBERNETICS, 2009, 38 (04): : 1169 - 1192
  • [4] Sliding-Mode Output Feedback Control Design
    Choi, Han Ho
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (11) : 4047 - 4054
  • [5] Sliding-Mode Control Scheme for an Intelligent Bicycle
    Defoort, Michael
    Murakami, Toshiyuki
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (09) : 3357 - 3368
  • [6] Positive filter synthesis for sliding-mode control
    Nascimento, Felipe Trindade
    Cunha, Jose Paulo V. S.
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (07): : 1006 - 1014
  • [7] Sliding-mode fault-tolerant control using the control allocation scheme
    Argha, Ahmadreza
    Su, Steven W.
    Zheng, Wei Xing
    Celler, Branko G.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (17) : 6256 - 6273
  • [8] Sliding-Mode Control for PMLSM Position Control-A Review
    Yu, Lijuan
    Huang, Jie
    Luo, Wei
    Chang, Shuyuan
    Sun, Huilu
    Tian, Hailong
    ACTUATORS, 2023, 12 (01)
  • [9] Vibration Suppression of Yarns via Sliding-mode Control
    Lin, Hong
    Feng, Zhihua
    Lan, Xiangjun
    FUNCTIONAL MANUFACTURING TECHNOLOGIES AND CEEUSRO II, 2011, 464 : 268 - +
  • [10] Output feedback sliding-mode control for the boost inverter
    Cortes, Domingo
    Alvarez, Jaime
    Vazquez, Nimrod
    IECON 2006 - 32ND ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS, VOLS 1-11, 2006, : 1618 - +