Compositional truth with propositional tautologies and quantifier-free correctness

被引:1
|
作者
Wcislo, Bartosz [1 ]
机构
[1] Univ Gdansk, Inst Philosophy, Ul Jana Bazynskiego 4, PL-80309 Gdansk, Poland
关键词
Compositional truth; Conservativeness; CT0; Tarski boundary; Propositional soundness; Disjunctive correctness;
D O I
10.1007/s00153-023-00893-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Cie & sacute;li & nacute;ski (J Philos Logic 39:325-337, 2010), Cie & sacute;li & nacute;ski asked whether compositional truth theory with the additional axiom that all propositional tautologies are true is conservative over Peano Arithmetic. We provide a partial answer to this question, showing that if we additionally assume that truth predicate agrees with arithmetical truth on quantifier-free sentences, the resulting theory is as strong as Delta 0-induction for the compositional truth predicate, hence non-conservative. On the other hand, it can be shown with a routine argument that the principle of quantifier-free correctness is itself conservative.
引用
收藏
页码:239 / 257
页数:19
相关论文
共 50 条
  • [31] Quantifier-Free Equational Logic and Prime Implicate Generation
    Echenim, Mnacho
    Peltier, Nicolas
    Tourret, Sophie
    AUTOMATED DEDUCTION - CADE-25, 2015, 9195 : 311 - 325
  • [32] An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic
    Brillout, Angelo
    Kroening, Daniel
    Ruemmer, Philipp
    Wahl, Thomas
    AUTOMATED REASONING, 2010, 6173 : 384 - +
  • [33] Quantifier-Free Axioms For Constructive Affine Plane Geometry
    Patrick Suppes
    Synthese, 2000, 125 : 263 - 281
  • [34] Rewriting-based Quantifier-free Interpolation for a Theory of Arrays
    Bruttomesso, Roberto
    Ghilardi, Silvio
    Ranise, Silvio
    22ND INTERNATIONAL CONFERENCE ON REWRITING TECHNIQUES AND APPLICATIONS (RTA'11), 2011, 10 : 171 - 186
  • [35] A quantifier-free first-order knowledge logic of authentication
    Kurkowski, Miroslaw
    Srebrny, Marian
    FUNDAMENTA INFORMATICAE, 2006, 72 (1-3) : 263 - 282
  • [36] Betti numbers of semialgebraic sets defined by quantifier-free formulae
    Gabrielov, A
    Vorobjov, N
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (03) : 395 - 401
  • [37] Betti Numbers of Semialgebraic Sets Defined by Quantifier-Free Formulae
    Andrei Gabrielov
    Nicolai Vorobjov
    Discrete & Computational Geometry, 2005, 33 : 395 - 401
  • [38] Coherence and Computational Complexity of Quantifier-free Dependence Logic Formulas
    Jarmo Kontinen
    Studia Logica, 2013, 101 : 267 - 291
  • [39] Coherence and Computational Complexity of Quantifier-free Dependence Logic Formulas
    Kontinen, Jarmo
    STUDIA LOGICA, 2013, 101 (02) : 267 - 291
  • [40] The Complexity of Limited Belief Reasoning-The Quantifier-Free Case
    Chen, Yijia
    Saffidine, Abdallah
    Schwering, Christoph
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1774 - 1780