Betti Numbers of Semialgebraic Sets Defined by Quantifier-Free Formulae

被引:0
|
作者
Andrei Gabrielov
Nicolai Vorobjov
机构
[1] Department of Mathematics,
[2] Purdue University,undefined
[3] West Lafayette,undefined
[4] IN 47907,undefined
[5] Department of Computer Science,undefined
[6] University of Bath,undefined
[7] Bath BA2 7AY,undefined
来源
关键词
Computational Mathematic; Betti Number; Atomic Formula; Boolean Combination; Distinct Polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a semialgebraic set in Rn defined by a Boolean combination of atomic formulae of the kind h * 0 where * \in { >, \ge, = }, deg(h) < d, and the number of distinct polynomials h is k. We prove that the sum of Betti numbers of X is less than O(k2d)n.
引用
收藏
页码:395 / 401
页数:6
相关论文
共 50 条