Automatic search intervals for the smoothing parameter in penalized splines

被引:0
|
作者
Li, Zheyuan [1 ]
Cao, Jiguo [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng, Henan, Peoples R China
[2] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Grid search; O-splines; Penalized B-splines; P-splines; QUANTILE REGRESSION; MODELS;
D O I
10.1007/s11222-022-10178-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The selection of smoothing parameter is central to the estimation of penalized splines. The best value of the smoothing parameter is often the one that optimizes a smoothness selection criterion, such as generalized cross-validation error (GCV) and restricted likelihood (REML). To correctly identify the global optimum rather than being trapped in an undesired local optimum, grid search is recommended for optimization. Unfortunately, the grid search method requires a pre-specified search interval that contains the unknown global optimum, yet no guideline is available for providing this interval. As a result, practitioners have to find it by trial and error. To overcome such difficulty, we develop novel algorithms to automatically find this interval. Our automatic search interval has four advantages. (i) It specifies a smoothing parameter range where the associated penalized least squares problem is numerically solvable. (ii) It is criterion-independent so that different criteria, such as GCV and REML, can be explored on the same parameter range. (iii) It is sufficiently wide to contain the global optimum of any criterion, so that for example, the global minimum of GCV and the global maximum of REML can both be identified. (iv) It is computationally cheap compared with the grid search itself, carrying no extra computational burden in practice. Our method is ready to use through our recently developed R package gps (>= version 1.1). It may be embedded in more advanced statistical modeling methods that rely on penalized splines.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Constrained penalized splines
    Meyer, Mary C.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (01): : 190 - 206
  • [32] Automatic computation of hierarchical biquadratic smoothing splines with minimum GCV
    Hancock, P. A.
    Hutchinson, M. F.
    [J]. COMPUTERS & GEOSCIENCES, 2006, 32 (06) : 834 - 845
  • [33] Penalized partial likelihood for frailties and smoothing splines in time to first insemination models for dairy cows
    Duchateau, L
    Janssen, P
    [J]. BIOMETRICS, 2004, 60 (03) : 608 - 614
  • [34] Automatic determination of the spread parameter in Gaussian smoothing
    Lin, HC
    Wang, LL
    Yang, SN
    [J]. PATTERN RECOGNITION LETTERS, 1996, 17 (12) : 1247 - 1252
  • [35] BIVARIATE PENALIZED SPLINES FOR REGRESSION
    Lai, Ming-Jun
    Wang, Li
    [J]. STATISTICA SINICA, 2013, 23 (03) : 1399 - 1417
  • [36] Asymptotic theory of penalized splines
    Xiao, Luo
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 747 - 794
  • [37] Fast adaptive penalized splines
    Krivobokova, Tatyana
    Crainiceanu, Ciprian M.
    Kauermann, Goeran
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (01) : 1 - 20
  • [38] Uniform convergence of penalized splines
    Xiao, Luo
    Nan, Zhe
    [J]. STAT, 2020, 9 (01):
  • [39] Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions
    Yoshida, Takuma
    [J]. STATISTICA NEERLANDICA, 2016, 70 (04) : 278 - 303
  • [40] Constrained smoothing splines
    Póo, JMR
    [J]. ECONOMETRIC THEORY, 1999, 15 (01) : 114 - 138