Determination of GL(3) Cusp Forms by Central Values of Quadratic Twisted L-Functions

被引:3
|
作者
Hua, Shenghao [1 ]
Huang, Bingrong
机构
[1] Shandong Univ, Data Sci Inst, Jinan 250100, Shandong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
DIRICHLET SERIES; 3RD MOMENT;
D O I
10.1093/imrn/rnac077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi and phi' be two GL(3) Hecke-Maass cusp forms. In this paper, we prove that phi = phi' or (phi) over tilde' if there exists a nonzero constant kappa such that L(1/2, phi circle times chi(8d)) = L(1/2, phi' circle times chi(8d)) for all positive odd square-free positive d. Here, (phi) over tilde' is dual form of phi' and chi(8d) is the quadratic character (8d/.). To prove this, we obtain asymptotic formulas for twisted 1st moment of central values of quadratic twisted L-functions on GL(3), which will have many other applications.
引用
收藏
页码:7976 / 8007
页数:32
相关论文
共 50 条