Quantitative non-vanishing of central values of certain L-functions on GL(2) x GL(3)

被引:0
|
作者
Sugiyama, Shingo [1 ]
Tsuzuki, Masao [2 ]
机构
[1] Nihon Univ, Coll Sci & Technol, Dept Math, Chiyoda Ku, 1-8-14 Suruga Dai, Tokyo 1018308, Japan
[2] Sophia Univ, Dept Sci & Technol, Chiyoda Ku, Kioi Cho 7-1, Tokyo 1028554, Japan
关键词
Trace formulas; Central L-values; Non-vanishing; AUTOMORPHIC L-FUNCTIONS; TRACE FORMULA; EQUIDISTRIBUTION;
D O I
10.1007/s00209-021-02886-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be an even Hecke-Maass cusp form on SL2(Z) whose L-function does not vanish at the center of the functional equation. In this article, we obtain an exact formula of the average of triple products of phi, f and (f) over bar, where f runs over an orthonornial basis H-k of Hecke eigen elliptic cusp forms on SL2(Z) of a fixed weight k >= 4. As an application, we prove a quantitative non-vanishing results on the central values for the family of degree 6 L-functions L(s, phi x Ad f) with f in the union of H-k (K <= k < 2K) as K -> infinity.
引用
收藏
页码:1447 / 1479
页数:33
相关论文
共 50 条