A matrix-valued Schoenberg's problem and its applications

被引:1
|
作者
Ievlev, Pavel [1 ]
Novikov, Svyatoslav [1 ]
机构
[1] Univ Lausanne, Lausanne, Switzerland
关键词
matrix-valued positive definite kernels; positive definite function; multivariate processes; Gaussian processes; multivariate Ornstein-Uhlenbeck process; multivariate fractional Brownian motion; cross-variogram; stationary time-series;
D O I
10.1214/23-ECP562
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we present a criterion for positive definiteness of the matrix-valued function f (t) := exp(-|t|alpha[B+ + B- sign(t)]), where alpha is an element of (0, 2] and B1 are real symmetric and antisymmetric d x d matrices. We also find a criterion for positive definiteness of its multidimensional generalization f (t) := exp(- fSd-1 |tTs|alpha[B+ + B- sign(tTs)] d Lambda(s)) where Lambda is a finite measure on the unit sphere Sd-1 subset of Rd under a more restrictive assumption that B1 commute and are normal. The associated stationary Gaussian random field may be viewed as as a generalization of the univariate fractional OrnsteinUhlenbeck process. This generalization turns out to be particularly useful for the asymptotic analysis of Rd-valued Gaussian random fields. Another possible application of these findings may concern variogram modelling and general stationary time series analysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Existence of Matrix-Valued Multiresolution Analysis-Based Matrix-Valued Tight Wavelet Frames
    Cui, Lihong
    Zhu, Ning
    Wang, Youquan
    Sun, Jianjun
    Cen, Yigang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (09) : 1089 - 1106
  • [42] A matrix-valued Bernoulli distribution
    Lovison, G
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (07) : 1573 - 1585
  • [43] On Existence of Matrix-Valued Wavelets
    Yu, Baomin
    ADVANCED RESEARCH ON MATERIAL ENGINEERING, CHEMISTRY AND BIOINFORMATICS, PTS 1 AND 2 (MECB 2011), 2011, 282-283 : 153 - 156
  • [44] MATRIX-VALUED TOEPLITZ OPERATORS
    HIRSCHMAN, II
    DUKE MATHEMATICAL JOURNAL, 1967, 34 (03) : 403 - +
  • [45] A Matrix-Valued Kuramoto Model
    Jared C. Bronski
    Thomas E. Carty
    Sarah E. Simpson
    Journal of Statistical Physics, 2020, 178 : 595 - 624
  • [46] ESTIMATION OF A MATRIX-VALUED PARAMETER
    USTYUZHANIN, AM
    DIFFERENTIAL EQUATIONS, 1985, 21 (03) : 266 - 271
  • [47] DECOMPOSITION OF MATRIX-VALUED MEASURES
    ROBERTSON, JB
    ROSENBERG, M
    MICHIGAN MATHEMATICAL JOURNAL, 1968, 15 (03) : 353 - +
  • [48] On a matrix-valued autoregressive model
    Samadi, S. Yaser
    Billard, Lynne
    JOURNAL OF TIME SERIES ANALYSIS, 2025, 46 (01) : 3 - 32
  • [49] A Constrained Nevanlinna-Pick Interpolation Problem for Matrix-valued Functions
    Ball, Joseph A.
    Bolotnikov, Vladimir
    ter Horst, Sanne
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (01) : 15 - 51
  • [50] Matrix-valued Allen–Cahn equation and the Keller–Rubinstein–Sternberg problem
    Mingwen Fei
    Fanghua Lin
    Wei Wang
    Zhifei Zhang
    Inventiones mathematicae, 2023, 233 : 1 - 80