Matrix-valued Allen–Cahn equation and the Keller–Rubinstein–Sternberg problem

被引:0
|
作者
Mingwen Fei
Fanghua Lin
Wei Wang
Zhifei Zhang
机构
[1] Anhui Normal University,School of Mathematics and Statistics
[2] New York University,Courant Institute of Mathematical Science
[3] Zhejiang University,School of Mathematical Sciences
[4] Peking University,School of Mathematical Sciences
来源
Inventiones mathematicae | 2023年 / 233卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the sharp interface limit of a matrix-valued Allen–Cahn equation, which takes the form: ∂tA=ΔA-ε-2(AATA-A)withA:Ω⊂Rm→Rn×n.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t{\textbf{A}}=\Delta {\textbf{A}}-\varepsilon ^{-2}({\textbf{A}}{\textbf{A}}^{\textrm{T}}{\textbf{A}}-{\textbf{A}})\quad \text {with}\quad {\textbf{A}}:\Omega \subset {\mathbb {R}}^m\rightarrow {\mathbb {R}}^{n\times n}. \end{aligned}$$\end{document}We show that the sharp interface system is a two-phases flow system: the interface evolves according to the motion by mean curvature; in the two bulk phase regions, the solution obeys the heat flow of harmonic maps with values in O+(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O^+(n)$$\end{document} and O-(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O^-(n)$$\end{document} (represent the sets of n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} orthogonal matrices with determinant +1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+1$$\end{document} and -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} respectively); on the interface, the phase matrices on two sides satisfy a novel mixed boundary condition. The above result provides a solution to the Keller–Rubinstein–Sternberg’s problem in the O(n) setting. Our proof relies on two key ingredients. First, in order to construct the approximate solutions by matched asymptotic expansions, as the standard approach does not seem to work, we introduce the notion of quasi-minimal connecting orbits. They satisfy the usual leading order equations up to some small higher order terms. In addition, the linearized systems around these quasi-minimal orbits needs to be solvable up to some good remainders. These flexibilities are needed for the possible “degenerations” and higher dimensional kernels for the linearized operators on matrix-valued functions due to intriguing boundary conditions at the sharp interface. The second key point is to establish a spectral uniform lower bound estimate for the linearized operator around approximate solutions. To this end, we introduce additional decompositions to reduce the problem into the coercive estimates of several linearized operators for scalar functions and some singular product estimates which are accomplished by exploring special cancellation structures between eigenfunctions of these linearized operators.
引用
收藏
页码:1 / 80
页数:79
相关论文
共 50 条
  • [1] Matrix-valued Allen-Cahn equation and the Keller-Rubinstein-Sternberg problem
    Fei, Mingwen
    Lin, Fanghua
    Wang, Wei
    Zhang, Zhifei
    INVENTIONES MATHEMATICAE, 2023, 233 (01) : 1 - 80
  • [2] Interface Dynamics for an Allen--Cahn-Type Equation Governing a Matrix-Valued Field
    Wang, Dong
    Osting, Braxton
    Wang, Xiao-Ping
    MULTISCALE MODELING & SIMULATION, 2019, 17 (04): : 1252 - 1273
  • [3] Allen-Cahn equation with matrix-valued anisotropic mobility in two-dimensional space
    Lee, Gyeonggyu
    Lee, Seunggyu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [4] Maximum bound principle for matrix-valued Allen-Cahn equation and integrating factor Runge-Kutta method
    Sun, Yabing
    Zhou, Quan
    NUMERICAL ALGORITHMS, 2024, 97 (01) : 391 - 429
  • [5] The matrix-valued hypergeometric equation
    Tirao, JA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (14) : 8138 - 8141
  • [6] Matrix-valued Bratu equation and the exact solution of its initial value problem
    Inoue, Hiroto
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2020, 12 (01):
  • [7] Matrix-valued Boltzmann equation for the Hubbard chain
    Fuerst, Martin L. R.
    Mendl, Christian B.
    Spohn, Herbert
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [8] On a moment problem for rational matrix-valued functions
    Fritzsche, B
    Kirstein, B
    Lasarow, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 372 : 1 - 31
  • [9] A matrix-valued solution to Bochner's problem
    Grünbaum, FA
    Pacharoni, I
    Tirao, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10647 - 10656
  • [10] Derivation of a matrix-valued Boltzmann equation for the Hubbard model
    Fuerst, Martin L. R.
    Lukkarinen, Jani
    Mei, Peng
    Spohn, Herbert
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (48)