Detection of Forestry Pests Based on Improved YOLOv5 and Transfer Learning

被引:9
|
作者
Liu, Dayang [1 ]
Lv, Feng [1 ]
Guo, Jingtao [1 ]
Zhang, Huiting [1 ]
Zhu, Liangkuan [1 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
来源
FORESTS | 2023年 / 14卷 / 07期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
forestry pest; detection; transfer learning; deep learning;
D O I
10.3390/f14071484
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Infestations or parasitism by forestry pests can lead to adverse consequences for tree growth, development, and overall tree quality, ultimately resulting in ecological degradation. The identification and localization of forestry pests are of utmost importance for effective pest control within forest ecosystems. To tackle the challenges posed by variations in pest poses and similarities between different classes, this study introduced a novel end-to-end pest detection algorithm that leverages deep convolutional neural networks (CNNs) and a transfer learning technique. The basic architecture of the method is YOLOv5s, and the C2f module is adopted to replace part of the C3 module to obtain richer gradient information. In addition, the DyHead module is applied to improve the size, task, and spatial awareness of the model. To optimize network parameters and enhance pest detection ability, the model is initially trained using an agricultural pest dataset and subsequently fine-tuned with the forestry pest dataset. A comparative analysis was performed between the proposed method and other mainstream target detection approaches, including YOLOv4-Tiny, YOLOv6, YOLOv7, YOLOv8, and Faster RCNN. The experimental results demonstrated impressive performance in detecting 31 types of forestry pests, achieving a detection precision of 98.1%, recall of 97.5%, and mAP@.5:.95 of 88.1%. Significantly, our method outperforms all the compared target detection methods, showcasing a minimum improvement of 2.1% in mAP@.5:.95. The model has shown robustness and effectiveness in accurately detecting various pests.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm
    Yang, Xinan
    Gao, Sen
    Xia, Chen
    Zhang, Bo
    Chen, Rui
    Gao, Jie
    Zhu, Wenkui
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 99 - 106
  • [42] Detection of River Floating Garbage Based on Improved YOLOv5
    Yang, Xingshuai
    Zhao, Jingyi
    Zhao, Li
    Zhang, Haiyang
    Li, Li
    Ji, Zhanlin
    Ganchev, Ivan
    MATHEMATICS, 2022, 10 (22)
  • [43] Lightweight highland barley detection based on improved YOLOv5
    Cai, Minghui
    Deng, Hui
    Cai, Jianwei
    Guo, Weipeng
    Hu, Zhipeng
    Yu, Dongzheng
    Zhang, Houxi
    PLANT METHODS, 2025, 21 (01)
  • [44] An infrared vehicle detection method based on improved YOLOv5
    Zhang X.
    Zhao H.
    Liu W.
    Zhao Y.
    Guan S.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (08):
  • [45] Small Object Detection Method based on Improved YOLOv5
    Gao, Tianyu
    Wushouer, Mairidan
    Tuerhong, Gulanbaier
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 144 - 149
  • [46] A Pedestrian Detection Network Model Based on Improved YOLOv5
    Li, Ming-Lun
    Sun, Guo-Bing
    Yu, Jia-Xiang
    ENTROPY, 2023, 25 (02)
  • [47] Blood Cell Detection Method Based on Improved YOLOv5
    Guo, Yecai
    Zhang, Mengyao
    IEEE ACCESS, 2023, 11 : 67987 - 67995
  • [48] Ship Target Detection Algorithm Based on Improved YOLOv5
    Zhou, Junchi
    Jiang, Ping
    Zou, Airu
    Chen, Xinglin
    Hu, Wenwu
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (08)
  • [49] Improved Pedestrian Fall Detection Model Based on YOLOv5
    Fengl, Yuhua
    Wei, Yi
    Lie, Kejiang
    Feng, Yuandan
    Gan, Zhiqiang
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 410 - 413
  • [50] Surface Defect Detection of Preform Based on Improved YOLOv5
    Hou, Jiatong
    You, Bo
    Xu, Jiazhong
    Wang, Tao
    Cao, Moran
    APPLIED SCIENCES-BASEL, 2023, 13 (13):