Ergodic results for the stochastic nonlinear Schrodinger equation with large damping

被引:7
|
作者
Brzezniak, Zdzislaw [1 ]
Ferrario, Benedetta [2 ]
Zanella, Margherita [3 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, England
[2] Univ Pavia, Dipartimento Sci Econ & Aziendali, I-27100 Pavia, Italy
[3] Politecn Milan, Dipartimento Matemat Francesco Brioschi, Via Bonardi 13, I-20133 Milan, Italy
关键词
Nonlinear Schrodinger equation; Additive noise; Unique invariant measure; Ergodicity; INVARIANT-MEASURES;
D O I
10.1007/s00028-023-00870-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear Schrodinger equation with a linear damping, i.e. a zero-order dissipation, and an additive noise. Working in R-d with d <= 3, we prove the uniqueness of the invariant measure when the damping coefficient is sufficiently large.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] A semi-discrete scheme for the stochastic nonlinear Schrodinger equation
    De Bouard, A
    Debussche, A
    NUMERISCHE MATHEMATIK, 2004, 96 (04) : 733 - 770
  • [42] New optical soliton of stochastic chiral nonlinear Schrodinger equation
    Neirameh, A.
    Eslami, M.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (05)
  • [43] New stochastic solutions for a new extension of nonlinear Schrodinger equation
    Alharbi, Yousef F.
    Sohaly, M. A.
    Abdelrahman, Mahmoud A. E.
    PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (04):
  • [44] Large time behavior for the cubic nonlinear Schrodinger equation
    Hayashi, N
    Naumkin, PI
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (05): : 1065 - 1085
  • [45] Effective Dynamics of the Nonlinear Schrodinger Equation on Large Domains
    Buckmaster, T.
    Germain, P.
    Hani, Z.
    Shatah, J.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (07) : 1407 - 1460
  • [46] LARGE TIME ASYMPTOTICS FOR THE FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Hayashi, Nakao
    Naumkin, Pavel, I
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2020, 25 (1-2) : 31 - 80
  • [47] EXISTENCE RESULTS OF A SCHRODINGER EQUATION INVOLVING A NONLINEAR OPERATOR
    Sun, Yan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 1802 - 1810
  • [48] The discrete nonlinear Schrodinger equation: A survey of recent results
    Kevrekidis, PG
    Rasmussen, KO
    Bishop, AR
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (21): : 2833 - 2900
  • [49] Existence and multiplicity results for a nonlinear stationary Schrodinger equation
    Moschetto, Danila Sandra
    ANNALES POLONICI MATHEMATICI, 2010, 99 (01) : 39 - 43
  • [50] The nonlinear Schrodinger equation with a random potential: results and puzzles
    Fishman, Shmuel
    Krivolapov, Yevgeny
    Soffer, Avy
    NONLINEARITY, 2012, 25 (04)