Ergodic results for the stochastic nonlinear Schrodinger equation with large damping

被引:7
|
作者
Brzezniak, Zdzislaw [1 ]
Ferrario, Benedetta [2 ]
Zanella, Margherita [3 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, England
[2] Univ Pavia, Dipartimento Sci Econ & Aziendali, I-27100 Pavia, Italy
[3] Politecn Milan, Dipartimento Matemat Francesco Brioschi, Via Bonardi 13, I-20133 Milan, Italy
关键词
Nonlinear Schrodinger equation; Additive noise; Unique invariant measure; Ergodicity; INVARIANT-MEASURES;
D O I
10.1007/s00028-023-00870-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear Schrodinger equation with a linear damping, i.e. a zero-order dissipation, and an additive noise. Working in R-d with d <= 3, we prove the uniqueness of the invariant measure when the damping coefficient is sufficiently large.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] OPTIMAL CONTROL FOR STOCHASTIC NONLINEAR SCHRODINGER EQUATION ON GRAPH
    Cui, Jianbo
    Liu, Shu
    Zhou, Haomin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2021 - 2042
  • [32] An Algebraic and Microlocal Approach to the Stochastic Nonlinear Schrodinger Equation
    Bonicelli, Alberto
    Dappiaggi, Claudio
    Rinaldi, Paolo
    ANNALES HENRI POINCARE, 2023, 24 (07): : 2443 - 2482
  • [33] Stochastic Multi-Symplectic Integrator for Stochastic Nonlinear Schrodinger Equation
    Jiang, Shanshan
    Wang, Lijin
    Hong, Jialin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (02) : 393 - 411
  • [34] Unconditional uniqueness results for the nonlinear Schrodinger equation
    Herr, Sebastian
    Sohinger, Vedran
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (07)
  • [35] Scattering results for the inhomogeneous nonlinear Schrodinger equation
    Aloui, Lassaad
    Grira, Mourad
    Tayachi, Slim
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 548 (01)
  • [36] Multiplicity results for a perturbed nonlinear Schrodinger equation
    Cammaroto, F.
    Chinni, A.
    Di Bella, B.
    GLASGOW MATHEMATICAL JOURNAL, 2007, 49 : 423 - 429
  • [37] Collapse of solitary excitations in the nonlinear Schrodinger equation with nonlinear damping and white noise
    Christiansen, PL
    Gaididei, YB
    Johansson, M
    Rasmussen, KO
    Yakimenko, II
    PHYSICAL REVIEW E, 1996, 54 (01): : 924 - 930
  • [38] On the Stochastic Strichartz Estimates and the Stochastic Nonlinear Schrodinger Equation on a Compact Riemannian Manifold
    Brzezniak, Z.
    Millet, A.
    POTENTIAL ANALYSIS, 2014, 41 (02) : 269 - 315
  • [39] Martingale solutions for the stochastic nonlinear Schrodinger equation in the energy space
    Brzezniak, Zdzislaw
    Hornung, Fabian
    Weis, Lutz
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) : 1273 - 1338
  • [40] SOLITON-COLLISION PROBLEM IN THE NONLINEAR SCHRODINGER-EQUATION WITH A NONLINEAR DAMPING TERM
    MALOMED, BA
    PHYSICAL REVIEW A, 1991, 44 (02): : 1412 - 1414