Ergodic results for the stochastic nonlinear Schrodinger equation with large damping

被引:7
|
作者
Brzezniak, Zdzislaw [1 ]
Ferrario, Benedetta [2 ]
Zanella, Margherita [3 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, England
[2] Univ Pavia, Dipartimento Sci Econ & Aziendali, I-27100 Pavia, Italy
[3] Politecn Milan, Dipartimento Matemat Francesco Brioschi, Via Bonardi 13, I-20133 Milan, Italy
关键词
Nonlinear Schrodinger equation; Additive noise; Unique invariant measure; Ergodicity; INVARIANT-MEASURES;
D O I
10.1007/s00028-023-00870-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear Schrodinger equation with a linear damping, i.e. a zero-order dissipation, and an additive noise. Working in R-d with d <= 3, we prove the uniqueness of the invariant measure when the damping coefficient is sufficiently large.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Ergodic results for the stochastic nonlinear Schrödinger equation with large damping
    Zdzislaw Brzeźniak
    Benedetta Ferrario
    Margherita Zanella
    Journal of Evolution Equations, 2023, 23
  • [2] Large deviations for nonlinear stochastic Schrodinger equation
    Fatheddin, Parisa
    Qiu, Zhaoyang
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (03) : 456 - 482
  • [3] A stochastic nonlinear Schrodinger equation
    Debussche, A
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 292 - 295
  • [4] Approximation of Invariant Measure for Damped Stochastic Nonlinear Schrodinger Equation via an Ergodic Numerical Scheme
    Chen, Chuchu
    Hong, Jialin
    Wang, Xu
    POTENTIAL ANALYSIS, 2017, 46 (02) : 323 - 367
  • [5] THE STOCHASTIC DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Zhong, Sijia
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (1-2) : 81 - 100
  • [6] Stochastic mechanics and nonlinear Schrodinger equation
    Mann, HJ
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 143 - 148
  • [7] Stochastic effects on the nonlinear Schrodinger equation
    Flessas, GP
    Leach, PGL
    Yannacopoulos, AN
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (05) : S161 - S168
  • [8] NONLINEAR SCHRODINGER EQUATION INCLUDING GROWTH AND DAMPING
    PEREIRA, NR
    STENFLO, L
    PHYSICS OF FLUIDS, 1977, 20 (10) : 1733 - 1734
  • [9] Approximation of Ergodic Limit for Conservative Stochastic Nonlinear Schrodinger Equations
    Hong, Jialin
    Wang, Xu
    INVARIANT MEASURES FOR STOCHASTIC NONLINEAR SCHRODINGER EQUATIONS: NUMERICAL APPROXIMATIONS AND SYMPLECTIC STRUCTURES, 2019, 2251 : 153 - 180
  • [10] On the stochastic wave equation with nonlinear damping
    Kim, Jong Uhn
    APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 58 (01): : 29 - 67