Self-Trapped Excitons in Metal-Halide Perovskites Investigated by Time-Dependent Density Functional Theory

被引:3
|
作者
Jin, Yu [1 ]
Rusishvili, Mariami [2 ]
Govoni, Marco [2 ,3 ,4 ]
Galli, Giulia [1 ,2 ,3 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[4] Univ Modena & Reggio Emilia, Dept Phys Comp Sci & Math, I-41125 Modena, Italy
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 12期
关键词
Broadband emission - Electronic excited state - Excitonic effect - Geometry relaxation - Halide perovskites - Hybrid functional - Optical-gap - Self trapped excitons - Theoretical study - Time dependent density functional theory;
D O I
10.1021/acs.jpclett.4c00209
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a theoretical study of the formation of self-trapped excitons (STEs) and the associated broadband emission in metal-halide perovskites Cs4SnBr6 and Cs2AgInCl6, using time-dependent density functional theory (TDDFT) with the dielectric-dependent hybrid (DDH) functional. Our approach allows for an accurate description of the excitonic effect and geometry relaxation in the electronic excited states and yields optical gap, STE emission energy, and emission spectra in reasonable agreement with experiments. We point out the significance of considering geometry relaxations in the electronic excited state by showing that the exciton-phonon coupling computed in the ground-state atomic geometry is insufficient to describe the physical properties of STEs. Overall, we find that TDDFT with the DDH hybrid functional is a suitable approach for the study of the formation of STEs in perovskite and provides insights for designing metal-halide perovskites with tailored emission properties.
引用
收藏
页码:3229 / 3237
页数:9
相关论文
共 50 条
  • [41] Bound excitons in time-dependent density-functional theory: Optical and energy-loss spectra
    Marini, A
    Del Sole, R
    Rubio, A
    PHYSICAL REVIEW LETTERS, 2003, 91 (25)
  • [42] Time-dependent density functional theory in real time.
    Bertsch, GF
    Yabana, K
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U233 - U233
  • [43] Achieving efficient self-trapped excitons emission by suppressing defect level in Sb3+3+doped metal halide
    Chen, Rong
    Lin, Fang
    Wei, Wenqing
    Liu, Mei
    Zhang, Wanxu
    Zheng, Yongzhuo
    Wang, Juan
    Guo, Fengwan
    OPTICAL MATERIALS, 2024, 157
  • [44] Electron scattering in time-dependent density functional theory
    Lacombe, Lionel
    Suzuki, Yasumitsu
    Watanabe, Kazuyuki
    Maitra, Neepa T.
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (06):
  • [45] DENSITY-FUNCTIONAL THEORY FOR TIME-DEPENDENT SYSTEMS
    RUNGE, E
    GROSS, EKU
    PHYSICAL REVIEW LETTERS, 1984, 52 (12) : 997 - 1000
  • [46] Quantum defect and time-dependent density functional theory
    Burke, Kieron
    van Faassen, Meta
    Wasserman, Adam
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [47] Floquet formulation of time-dependent density functional theory
    Telnov, DA
    Chu, SI
    CHEMICAL PHYSICS LETTERS, 1997, 264 (05) : 466 - 476
  • [48] Several theorems in time-dependent density functional theory
    Hessler, P
    Park, J
    Burke, K
    PHYSICAL REVIEW LETTERS, 1999, 82 (02) : 378 - 381
  • [49] Excitonic effects in a time-dependent density functional theory
    Igumenshchev, Kirill I.
    Tretiak, Sergei
    Chernyak, Vladimir Y.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (11):
  • [50] Solitons in Nuclear Time-Dependent Density Functional Theory
    Iwata, Yoritaka
    FRONTIERS IN PHYSICS, 2020, 8