Self-Trapped Excitons in Metal-Halide Perovskites Investigated by Time-Dependent Density Functional Theory

被引:3
|
作者
Jin, Yu [1 ]
Rusishvili, Mariami [2 ]
Govoni, Marco [2 ,3 ,4 ]
Galli, Giulia [1 ,2 ,3 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[4] Univ Modena & Reggio Emilia, Dept Phys Comp Sci & Math, I-41125 Modena, Italy
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 12期
关键词
Broadband emission - Electronic excited state - Excitonic effect - Geometry relaxation - Halide perovskites - Hybrid functional - Optical-gap - Self trapped excitons - Theoretical study - Time dependent density functional theory;
D O I
10.1021/acs.jpclett.4c00209
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a theoretical study of the formation of self-trapped excitons (STEs) and the associated broadband emission in metal-halide perovskites Cs4SnBr6 and Cs2AgInCl6, using time-dependent density functional theory (TDDFT) with the dielectric-dependent hybrid (DDH) functional. Our approach allows for an accurate description of the excitonic effect and geometry relaxation in the electronic excited states and yields optical gap, STE emission energy, and emission spectra in reasonable agreement with experiments. We point out the significance of considering geometry relaxations in the electronic excited state by showing that the exciton-phonon coupling computed in the ground-state atomic geometry is insufficient to describe the physical properties of STEs. Overall, we find that TDDFT with the DDH hybrid functional is a suitable approach for the study of the formation of STEs in perovskite and provides insights for designing metal-halide perovskites with tailored emission properties.
引用
收藏
页码:3229 / 3237
页数:9
相关论文
共 50 条
  • [21] Chiroptical properties of artemisinin and artemether investigated using time-dependent density functional theory
    Li Li
    Bei-Bei Yang
    Yi-Kang Si
    Chinese Chemical Letters, 2014, 25 (12) : 1586 - 1590
  • [22] Time-dependent density-functional theory for trapped strongly interacting fermionic atoms
    Kim, YE
    Zubarev, AL
    PHYSICAL REVIEW A, 2004, 70 (03) : 033612 - 1
  • [23] Chiroptical properties of artemisinin and artemether investigated using time-dependent density functional theory
    Li, Li
    Yang, Bei-Bei
    Si, Yi-Kang
    CHINESE CHEMICAL LETTERS, 2014, 25 (12) : 1586 - 1590
  • [24] Excitation energies of metal complexes with time-dependent density functional theory
    Rosa, A
    Ricciardi, G
    Gritsenko, O
    Baerends, EJ
    PRINCIPLES AND APPLICATIONS OF DENSITY FUNCTIONAL THEORY IN INORGANIC CHEMISTRY I, 2004, 112 : 49 - 115
  • [25] Pseudospectral time-dependent density functional theory
    Ko, Chaehyuk
    Malick, David K.
    Braden, Dale A.
    Friesner, Richard A.
    Martinez, Todd J.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (10):
  • [26] Time-dependent pair density functional theory
    Ágnes Nagy
    The European Physical Journal B, 2018, 91
  • [27] Time-dependent density functional theory on a lattice
    Farzanehpour, M.
    Tokatly, I. V.
    PHYSICAL REVIEW B, 2012, 86 (12)
  • [28] Applications of time-dependent density functional theory
    Botti, Silvana
    PHYSICA SCRIPTA, 2004, T109 : 54 - 60
  • [29] Time-dependent density functional theory as a thermodynamics
    Nagy, A.
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2010, 943 (1-3): : 48 - 52
  • [30] Time-dependent pair density functional theory
    Nagy, Agnes
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (06):