Efficient algorithms for computing rank-revealing factorizations on a GPU

被引:0
|
作者
Heavner, Nathan [1 ]
Chen, Chao [2 ]
Gopal, Abinand [3 ]
Martinsson, Per-Gunnar [2 ,4 ]
机构
[1] Univ Colorado Boulder, Dept Appl Math, Boulder, CO USA
[2] Univ Texas Austin, Oden Inst, Austin, TX 78712 USA
[3] Yale Univ, Dept Math, New Haven, CT USA
[4] Univ Texas Austin, Dept Math, Austin, TX USA
基金
美国国家科学基金会;
关键词
parallel algorithm for GPU; randomized numerical linear algebra; rank-revealing matrix factorization; LINEAR ALGEBRA; RANDOMIZED ALGORITHMS; QR FACTORIZATION; APPROXIMATION; MATRIX; COLUMN; DECOMPOSITION; DIVIDE;
D O I
10.1002/nla.2515
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Standard rank-revealing factorizations such as the singular value decomposition (SVD) and column pivoted QR factorization are challenging to implement efficiently on a GPU. A major difficulty in this regard is the inability of standard algorithms to cast most operations in terms of the Level-3 BLAS. This article presents two alternative algorithms for computing a rank-revealing factorization of the form A = UTV*, where U and V are orthogonal and T is trapezoidal (or triangular if A is square). Both algorithms use randomized projection techniques to cast most of the flops in terms of matrix-matrix multiplication, which is exceptionally efficient on the GPU. Numerical experiments illustrate that these algorithms achieve significant acceleration over finely tuned GPU implementations of the SVD while providing low rank approximation errors close to that of the SVD.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] On the failure of rank-revealing QR factorization software - A case study
    Drmac, Zlatko
    Bujanovic, Zvonimir
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (02):
  • [42] Rank-Revealing Orthogonal Decomposition in Extreme Learning Machine Design
    Kabzinski, Jacek
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 3 - 13
  • [43] UTV Tools: Matlab templates for rank-revealing UTV decompositions
    Ricardo D. Fierro
    Per Christian Hansen
    Peter Søren Kirk Hansen
    [J]. Numerical Algorithms, 1999, 20 : 165 - 194
  • [44] UTV tools: Matlab templates for rank-revealing UTV decompositions
    Fierro, RD
    Hansen, PC
    Hansen, PSK
    [J]. NUMERICAL ALGORITHMS, 1999, 20 (2-3) : 165 - 194
  • [45] ACCURACY OF TSVD SOLUTIONS COMPUTED FROM RANK-REVEALING DECOMPOSITIONS
    FIERRO, RD
    HANSEN, PC
    [J]. NUMERISCHE MATHEMATIK, 1995, 70 (04) : 453 - 471
  • [46] EFFICIENT DESIGN AND IMPLEMENTATION OF VISUAL COMPUTING ALGORITHMS ON THE GPU
    Park, In Kyu
    Singhal, Nitin
    Lee, Man Hee
    Cho, Sungdae
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2321 - +
  • [47] Online rank-revealing block-term tensor decomposition
    Rontogiannis, Athanasios A.
    Kofidis, Eleftherios
    Giampouras, Paris V.
    [J]. SIGNAL PROCESSING, 2023, 212
  • [48] INVESTIGATIONS IN THE NUMERICAL BEHAVIOR OF THE ADAPTIVE RANK-REVEALING QR FACTORIZATION
    FARGUES, MP
    FERREIRA, MP
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (11) : 2787 - 2791
  • [49] RANK-REVEALING BLOCK-TERM DECOMPOSITION FOR TENSOR COMPLETION
    Rontogiannis, Athanasios A.
    Giampouras, Paris, V
    Kofidis, Eleftherios
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2915 - 2919
  • [50] Low-Rank and Sparse Matrix Recovery Based on a Randomized Rank-Revealing Decomposition
    Kaloorazi, Maboud F.
    de Lamare, Rodrigo C.
    [J]. 2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,