Efficient algorithms for computing rank-revealing factorizations on a GPU

被引:0
|
作者
Heavner, Nathan [1 ]
Chen, Chao [2 ]
Gopal, Abinand [3 ]
Martinsson, Per-Gunnar [2 ,4 ]
机构
[1] Univ Colorado Boulder, Dept Appl Math, Boulder, CO USA
[2] Univ Texas Austin, Oden Inst, Austin, TX 78712 USA
[3] Yale Univ, Dept Math, New Haven, CT USA
[4] Univ Texas Austin, Dept Math, Austin, TX USA
基金
美国国家科学基金会;
关键词
parallel algorithm for GPU; randomized numerical linear algebra; rank-revealing matrix factorization; LINEAR ALGEBRA; RANDOMIZED ALGORITHMS; QR FACTORIZATION; APPROXIMATION; MATRIX; COLUMN; DECOMPOSITION; DIVIDE;
D O I
10.1002/nla.2515
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Standard rank-revealing factorizations such as the singular value decomposition (SVD) and column pivoted QR factorization are challenging to implement efficiently on a GPU. A major difficulty in this regard is the inability of standard algorithms to cast most operations in terms of the Level-3 BLAS. This article presents two alternative algorithms for computing a rank-revealing factorization of the form A = UTV*, where U and V are orthogonal and T is trapezoidal (or triangular if A is square). Both algorithms use randomized projection techniques to cast most of the flops in terms of matrix-matrix multiplication, which is exceptionally efficient on the GPU. Numerical experiments illustrate that these algorithms achieve significant acceleration over finely tuned GPU implementations of the SVD while providing low rank approximation errors close to that of the SVD.
引用
收藏
页数:28
相关论文
共 50 条
  • [11] Deviation maximization for rank-revealing QR factorizations
    Dessole, Monica
    Marcuzzi, Fabio
    [J]. NUMERICAL ALGORITHMS, 2022, 91 (03) : 1047 - 1079
  • [12] RANK-REVEALING QR FACTORIZATIONS AND THE SINGULAR VALUE DECOMPOSITION
    HONG, YP
    PAN, CT
    [J]. MATHEMATICS OF COMPUTATION, 1992, 58 (197) : 213 - 232
  • [13] STRUCTURE-PRESERVING AND RANK-REVEALING QR-FACTORIZATIONS
    BISCHOF, CH
    HANSEN, PC
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (06): : 1332 - 1350
  • [14] Algorithm 782:: Codes for rank-revealing QR factorizations of dense matrices
    Bischof, CH
    Quintana-Ortí, G
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1998, 24 (02): : 254 - 257
  • [15] Randomized Projection for Rank-Revealing Matrix Factorizations and Low-Rank Approximations
    Duersch, Jed A.
    Gu, Ming
    [J]. SIAM REVIEW, 2020, 62 (03) : 661 - 682
  • [16] New parallel (rank-revealing) QR factorization algorithms
    da Cunha, RD
    Becker, D
    Patterson, JC
    [J]. EURO-PAR 2002 PARALLEL PROCESSING, PROCEEDINGS, 2002, 2400 : 677 - 686
  • [17] Computing symmetric rank-revealing decompositions via triangular factorization
    Hansen, PC
    Yalamov, PY
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (02) : 443 - 458
  • [18] UTV expansion pack: Special-purpose rank-revealing algorithms
    Fierro, RD
    Hansen, PC
    [J]. NUMERICAL ALGORITHMS, 2005, 40 (01) : 47 - 66
  • [19] UTV Expansion Pack: Special-purpose rank-revealing algorithms
    Ricardo D. Fierro
    Per Christian Hansen
    [J]. Numerical Algorithms, 2005, 40 : 47 - 66
  • [20] randUTV: A Blocked Randomized Algorithm for Computing a Rank-Revealing UTV Factorization
    Martinsson, P. G.
    Quintana-Orti, G.
    Heavner, H.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (01):