Efficient algorithms for computing rank-revealing factorizations on a GPU

被引:0
|
作者
Heavner, Nathan [1 ]
Chen, Chao [2 ]
Gopal, Abinand [3 ]
Martinsson, Per-Gunnar [2 ,4 ]
机构
[1] Univ Colorado Boulder, Dept Appl Math, Boulder, CO USA
[2] Univ Texas Austin, Oden Inst, Austin, TX 78712 USA
[3] Yale Univ, Dept Math, New Haven, CT USA
[4] Univ Texas Austin, Dept Math, Austin, TX USA
基金
美国国家科学基金会;
关键词
parallel algorithm for GPU; randomized numerical linear algebra; rank-revealing matrix factorization; LINEAR ALGEBRA; RANDOMIZED ALGORITHMS; QR FACTORIZATION; APPROXIMATION; MATRIX; COLUMN; DECOMPOSITION; DIVIDE;
D O I
10.1002/nla.2515
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Standard rank-revealing factorizations such as the singular value decomposition (SVD) and column pivoted QR factorization are challenging to implement efficiently on a GPU. A major difficulty in this regard is the inability of standard algorithms to cast most operations in terms of the Level-3 BLAS. This article presents two alternative algorithms for computing a rank-revealing factorization of the form A = UTV*, where U and V are orthogonal and T is trapezoidal (or triangular if A is square). Both algorithms use randomized projection techniques to cast most of the flops in terms of matrix-matrix multiplication, which is exceptionally efficient on the GPU. Numerical experiments illustrate that these algorithms achieve significant acceleration over finely tuned GPU implementations of the SVD while providing low rank approximation errors close to that of the SVD.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Parallel algorithms for computing rank-revealing QR factorizations
    Quintana-Orti, G
    Quintana-Orti, ES
    [J]. WORKSHOP ON HIGH PERFORMANCE COMPUTING AND GIGABIT LOCAL AREA NETWORKS, 1997, 226 : 122 - 137
  • [2] ON RANK-REVEALING FACTORIZATIONS
    CHANDRASEKARAN, S
    IPSEN, ICF
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (02) : 592 - 622
  • [3] Computing rank-revealing QR factorizations of dense matrices
    Bischof, CH
    Quintana-Ortí, G
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1998, 24 (02): : 226 - 253
  • [4] Efficient algorithms for computing a strong rank-revealing QR factorization
    Gu, M
    Eisenstat, SC
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (04): : 848 - 869
  • [5] A RANDOMIZED BLOCKED ALGORITHM FOR EFFICIENTLY COMPUTING RANK-REVEALING FACTORIZATIONS OF MATRICES
    Martinsson, Per-Gunnar
    Voronin, Sergey
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : S485 - S507
  • [6] Computing rank-revealing factorizations of matrices stored out-of-core
    Heavner, N.
    Martinsson, P. G.
    Quintana-Orti, G.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (22):
  • [7] On the existence and computation of rank-revealing LU factorizations
    Pan, CT
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 316 (1-3) : 199 - 222
  • [8] Deviation maximization for rank-revealing QR factorizations
    Monica Dessole
    Fabio Marcuzzi
    [J]. Numerical Algorithms, 2022, 91 : 1047 - 1079
  • [9] Algorithm 1022: Efficient Algorithms for Computing a Rank-Revealing UTV Factorization on Parallel Computing Architectures
    Heavner, N.
    Igual, F. D.
    Quintana-Orti, G.
    Martinsson, P. G.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2022, 48 (02):
  • [10] On rank-revealing QR factorizations of quaternion matrices
    Liu, Qiaohua
    Li, Chuge
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024,