On the derivations of the quadratic Jordan product in the space of rectangular matrices

被引:1
|
作者
Isidro, Jose M.
机构
关键词
JB*-triples; Classical Cartan factors; JB*-triple derivations; Banach-Lie groups;
D O I
10.1016/j.jalgebra.2023.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-n,M-m be a rectangularfinite dimensional Cartan factor, i.e. the space L(C-n, C-m) with 1 <= n <= m, and let delta: M-n,M-m -> M-n,M-m be a quadratic Jordan derivation of M-n,M-m, i.e., a map (neither linearity nor continuity of delta is assumed) that satisfies the functional equation delta{ABA} = {delta(A) BA} + {A delta(B) A} + {AB delta(A)}, ( A, B is an element of M-n,M-m), where (A, B, C) -> {A B, C} := 1/2 (AB*C+ CB*A) stands for the Jordan triple product in M-n,M-m. We prove that then delta automatically is a continuous complex linear map on M-n,M-m. More precisely we show that delta admits a representation of the form delta(A) = UA + AV, (A is an element of M-n,M-m), for a suitable pair U, Vof square skew symmetric matrices with complex entries U. M-n,M-n and V is an element of M-m,M-m. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:911 / 927
页数:17
相关论文
共 50 条
  • [41] Additivity of Jordan Derivations on Jordan Algebras with Idempotents
    Bruno L. M. Ferreira
    Ajda Fošner
    Gabriela C. Moraes
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2779 - 2788
  • [42] Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras
    Gandomani, Mohammad Hossein Ahmadi
    Mehdipour, Mohammad Javad
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (01) : 189 - 204
  • [43] Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras
    Mohammad Hossein Ahmadi Gandomani
    Mohammad Javad Mehdipour
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 189 - 204
  • [44] Jordan triple product homomorphisms on Hermitian matrices of dimension two
    Bukovsek, Damjana Kokol
    Mojskerc, Blaz
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (1-2): : 227 - 250
  • [45] Maps preserving unitarily invariant norms of Jordan product of matrices
    Kuzma, Bojan
    Petek, Tatjana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1579 - 1596
  • [46] Generalized Derivations and Generalized Jordan Derivations of Quaternion Rings
    H. Ghahramani
    M. N. Ghosseiriand
    L. Heidari Zadeh
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 305 - 308
  • [47] Generalized Derivations and Generalized Jordan Derivations of Quaternion Rings
    Ghahramani, H.
    Ghosseiriand, M. N.
    Zadeh, L. Heidari
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (01): : 305 - 308
  • [48] Additive derivations and Jordan derivations on algebras of unbounded operators
    Timmermann, W
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (04): : 717 - 733
  • [49] Jordan derivations of polynomial rings
    Lishchinskiy, I. I.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2009, 1 (01) : 65 - 68
  • [50] TERNARY DERIVATIONS OF JORDAN SUPERALGEBRAS
    Shestakov, A. I.
    ALGEBRA AND LOGIC, 2014, 53 (04) : 323 - 348