Frame wavelet set and frequency frame wavelet in L2(Rn)

被引:0
|
作者
Yadav, G. C. S. [1 ]
Kumar, Arun [1 ]
机构
[1] Univ Allahabad, Dept Math, Prayagraj 211002, Uttar Pradesh, India
关键词
Wavelets; Frame wavelet; Frame wavelet sets; Frequency domain; Frequency frame wavelet;
D O I
10.1007/s11868-023-00511-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a necessary condition for a measurable subset of R-n to be a frame wavelet set. Some examples are constructed with the help of this result. Next, we prove a condition under which a function psi becomes a frequency frame wavelet in L-2(R-n).
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Construction of nonseparable symmetric tight wavelet frames of L2(Rn)
    Feng, Yan
    Li, Youfa
    Shen, Yanfeng
    Yang, Shouzhi
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (02) : 300 - 307
  • [22] TIGHT WAVELET FRAME USING COMPLEX WAVELET DESIGNED IN FREE SHAPE ON FREQUENCY DOMAIN
    Toda, Hiroshi
    Zhang, Zhong
    [J]. PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2019, : 140 - 145
  • [23] The canonical frame of a wavelet frame generated by two functions
    Luo, Ping
    Guo, Ming-Pu
    [J]. 2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 1708 - 1712
  • [24] Deconvolution: a wavelet frame approach
    Chai, Anwei
    Shen, Zuowei
    [J]. NUMERISCHE MATHEMATIK, 2007, 106 (04) : 529 - 587
  • [25] Deconvolution: a wavelet frame approach
    Anwei Chai
    Zuowei Shen
    [J]. Numerische Mathematik, 2007, 106 : 529 - 587
  • [26] Frame wavelet sets in R
    Dai, X
    Diao, Y
    Gu, Q
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (07) : 2045 - 2055
  • [27] Intrinsic wavelet and frame applications
    Benedetto, John J.
    Andrews, Travis D.
    [J]. INDEPENDENT COMPONENT ANALYSES, WAVELETS, NEURAL NETWORKS, BIOSYSTEMS, AND NANOENGINEERING IX, 2011, 8058
  • [28] Wavelet frame and system identification
    Zhang, QH
    [J]. (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 35 - 40
  • [29] Physical wavelet frame denoising
    Zhang, RF
    Ulrych, TJ
    [J]. GEOPHYSICS, 2003, 68 (01) : 225 - 231
  • [30] APPROXIMATE TIGHT WAVELET FRAME USING GABOR WAVELET
    Shirasuna, Vhyori
    Zhang, Zhong
    Toda, Hiroshi
    Miyake, Tetsuo
    [J]. PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 105 - 110