The canonical frame of a wavelet frame generated by two functions

被引:0
|
作者
Luo, Ping [1 ]
Guo, Ming-Pu [1 ]
机构
[1] Henan Vocat & Tech Coll Ind, Elementary Dept, Nanyang 473009, Peoples R China
关键词
frame operator; wavelet frame; the canonical wavelet frame; dual wavelet frame;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we show that there exist wavelet frame generated by two functions which have good dual wavelet frames, but for which the canonical dual wavelet frame does not consist of wavelets. That is to say, the canonical dual wavelet frame cannot be generated by the translations and dilations of a single function.
引用
收藏
页码:1708 / 1712
页数:5
相关论文
共 50 条
  • [1] The Standard Dual Frame of a Wavelet Frame Generated by Two Functions
    Zhou, Jianfeng
    Li, Tizheng
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2008, : 277 - +
  • [2] The canonical dual frame of a wavelet frame
    Daubechies, I
    Han, B
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 12 (03) : 269 - 285
  • [3] The canonical and alternate duals of a wavelet frame
    Bownik, Marcin
    Lemvig, Jakob
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 23 (02) : 263 - 272
  • [4] A CLASS OF CANONICAL WAVELET FRAMES GENERATED BY TWO FUNCTIONS
    Li, Zhi-Fei
    Li, Ti-Zheng
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1 AND 2, 2008, : 491 - 495
  • [5] GENERALIZATION OF THE FRAME OPERATOR AND THE CANONICAL DUAL FRAME TO BANACH SPACES
    Stoeva, Diana T.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2008, 1 (04) : 631 - 643
  • [6] Frame wavelet set and frequency frame wavelet in L2(Rn)
    Yadav, G. C. S.
    Kumar, Arun
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (02)
  • [7] A canonical frame for nonholonomic rank two distributions of maximal class
    Doubrov, B
    Zelenko, I
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (08) : 589 - 594
  • [8] The canonical frame of purified gravity
    Beltran Jimenez, Jose
    Heisenberg, Lavinia
    Koivisto, Tomi S.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (14):
  • [9] Frame scaling function sets and frame wavelet sets in Rd
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2483 - 2490
  • [10] General frame multiresolution analysis and its wavelet frame representation
    Li, M
    Ogawa, H
    Yamashita, Y
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1996, E79A (10) : 1713 - 1721