Quantification of Thin Walls and Capsules Using X-Ray Computed Tomography

被引:0
|
作者
Patterson, Brian M. [1 ]
Young, Steven G. [1 ]
Morrow, Tana [1 ]
Day, Thomas [1 ]
Schmidt, Derek [1 ]
Cordes, Nikolaus L. [1 ]
机构
[1] Los Alamos Natl Lab, Engn Mat Grp, Los Alamos, NM 87545 USA
关键词
X-ray tomography; opacity target; double shell; metrology; FABRICATION; IMAGE;
D O I
10.1080/15361055.2023.2185030
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
X-ray computed tomography (CT) is widely used in material science to understand the inner morphology of a specimen. Often, it is used to qualitatively understand the distribution of salient features such as cracks, voids, or particles. There are many challenges in using X-ray CT in a quantitative manner. These include a coarser resolution for comparable fields of view when compared to other imaging techniques (i.e., electron or optical microscopy), imaging artifacts (i.e., beam hardening and phase contrast), and the plethora of imaging and processing parameters that are chosen by the instrument/software user that can significantly affect the resultant measures. These limitations must be considered and quantified to acquire accurate and precise measurements. X-ray CT is powerful in that it can measure, in three dimensions, salient features that are subsurface and cannot be imaged with other direct line-of-sight imaging techniques. In this work, we discuss the use of X-ray CT to measure the thickness variations of thin walls of opacity capsules as well as the measurement of double-shell targets to understand the concentricity of the capsules within each other. Morphological measurements needed for target characterization require very high accuracy and precision. This paper will describe the application for the first time of a variety of measurements and will explore their robustness and pros and cons to identify areas of research to improve their accuracy and precision.
引用
收藏
页码:895 / 906
页数:12
相关论文
共 50 条
  • [31] X-ray computed tomography using curvelet sparse regularization
    Wieczorek, Matthias
    Frikel, Juergen
    Vogel, Jakob
    Eggl, Elena
    Kopp, Felix
    Noel, Peter B.
    Pfeiffer, Franz
    Demaret, Laurent
    Lasser, Tobias
    MEDICAL PHYSICS, 2015, 42 (04) : 1555 - 1565
  • [32] Defects Characterization in CFRP Using X-ray Computed Tomography
    Liu, Xueshu
    Chen, Fei
    POLYMERS & POLYMER COMPOSITES, 2016, 24 (02): : 149 - 154
  • [33] Computed tomography of x-ray images using neural networks
    Allred, LG
    Jones, MH
    Sheats, MJ
    Davis, AW
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE III, 2000, 4055 : 460 - 468
  • [34] X-ray computed tomography reconstruction using scattered radiation
    Takemoto, Kazuma
    Yamazaki, Yoichi
    Toda, Naohiro
    Proceedings of the 20th EGS Users' Meeting in Japan, 2013, : 1 - 8
  • [35] Testing loaded samples using X-ray computed tomography
    Vasil'ev, S. L.
    Artem'ev, A. V.
    Bakulin, V. N.
    Yurgenson, S. A.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2016, 52 (05) : 294 - 302
  • [36] Study of Soil Compaction Using X-Ray Computed Tomography
    Al-Hattamleh, O.
    Razavi, M. R.
    Muhunthan, B.
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2008, 2 (02) : 111 - 123
  • [37] X-ray computed tomography using sparsity based regularization
    Liu, Li
    Lin, Weikai
    Pan, Jing
    Jin, Mingwu
    NEUROCOMPUTING, 2016, 173 : 256 - 269
  • [38] Quantification of damage parameters using X-ray tomography images
    Wang, LB
    Frost, JD
    Voyiadjis, GZ
    Harman, TP
    MECHANICS OF MATERIALS, 2003, 35 (08) : 777 - 790
  • [39] Testing loaded samples using X-ray computed tomography
    S. L. Vasil’ev
    A. V. Artem’ev
    V. N. Bakulin
    S. A. Yurgenson
    Russian Journal of Nondestructive Testing, 2016, 52 : 294 - 302
  • [40] Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging
    Chen, Dongmei
    Zhu, Shouping
    Chen, Xueli
    Chao, Tiantian
    Cao, Xu
    Zhao, Fengjun
    Huang, Liyu
    Liang, Jimin
    APPLIED PHYSICS LETTERS, 2014, 105 (19)