A deep-learning-based image forgery detection framework for controlling the spread of misinformation

被引:18
|
作者
Ghai, Ambica [1 ]
Kumar, Pradeep [1 ]
Gupta, Samrat [2 ]
机构
[1] Indian Inst Management Lucknow, Informat Technol & Syst, Lucknow, Uttar Pradesh, India
[2] Indian Inst Management Ahmedabad, Ahmadabad, Gujarat, India
关键词
Decision support; Social media; Information management; User-generated content system; Decision-making; Inductive research; SOCIAL MEDIA; DIGITAL METHODS; IMPACT; TIME;
D O I
10.1108/ITP-10-2020-0699
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Purpose Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered with to influence public opinion. Since the consumers of online information (misinformation) tend to trust the content when the image(s) supplement the text, image manipulation software is increasingly being used to forge the images. To address the crucial problem of image manipulation, this study focusses on developing a deep-learning-based image forgery detection framework. Design/methodology/approach The proposed deep-learning-based framework aims to detect images forged using copy-move and splicing techniques. The image transformation technique aids the identification of relevant features for the network to train effectively. After that, the pre-trained customized convolutional neural network is used to train on the public benchmark datasets, and the performance is evaluated on the test dataset using various parameters. Findings The comparative analysis of image transformation techniques and experiments conducted on benchmark datasets from a variety of socio-cultural domains establishes the effectiveness and viability of the proposed framework. These findings affirm the potential applicability of proposed framework in real-time image forgery detection. Research limitations/implications This study bears implications for several important aspects of research on image forgery detection. First this research adds to recent discussion on feature extraction and learning for image forgery detection. While prior research on image forgery detection, hand-crafted the features, the proposed solution contributes to stream of literature that automatically learns the features and classify the images. Second, this research contributes to ongoing effort in curtailing the spread of misinformation using images. The extant literature on spread of misinformation has prominently focussed on textual data shared over social media platforms. The study addresses the call for greater emphasis on the development of robust image transformation techniques. Practical implications This study carries important practical implications for various domains such as forensic sciences, media and journalism where image data is increasingly being used to make inferences. The integration of image forgery detection tools can be helpful in determining the credibility of the article or post before it is shared over the Internet. The content shared over the Internet by the users has become an important component of news reporting. The framework proposed in this paper can be further extended and trained on more annotated real-world data so as to function as a tool for fact-checkers. Social implications In the current scenario wherein most of the image forgery detection studies attempt to assess whether the image is real or forged in an offline mode, it is crucial to identify any trending or potential forged image as early as possible. By learning from historical data, the proposed framework can aid in early prediction of forged images to detect the newly emerging forged images even before they occur. In summary, the proposed framework has a potential to mitigate physical spreading and psychological impact of forged images on social media. Originality/value This study focusses on copy-move and splicing techniques while integrating transfer learning concepts to classify forged images with high accuracy. The synergistic use of hitherto little explored image transformation techniques and customized convolutional neural network helps design a robust image forgery detection framework. Experiments and findings establish that the proposed framework accurately classifies forged images, thus mitigating the negative socio-cultural spread of misinformation.
引用
收藏
页码:966 / 997
页数:32
相关论文
共 50 条
  • [21] Deep-Learning-Based Lossless Image Coding
    Schiopu, Ionut
    Munteanu, Adrian
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) : 1829 - 1842
  • [22] Framework For Image Forgery Detection And Classification Using Machine Learning
    Ranjan, Shruti
    Garhwal, Prayati
    Bhan, Anupama
    Arora, Monika
    Mehra, Anu
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1872 - 1877
  • [23] Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection
    Yuan, Kunhao
    Zhuang, Xu
    Schaefer, Gerald
    Feng, Jianxin
    Guan, Lin
    Fang, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 7422 - 7434
  • [24] Recent Advances in Deep-Learning-Based SAR Image Target Detection and Recognition
    Lang, Ping
    Fu, Xiongjun
    Dong, Jian
    Yang, Huizhang
    Yin, Junjun
    Yang, Jian
    Martorella, Marco
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 6884 - 6915
  • [25] Deep-Learning-Based Coronary Artery Calcium Detection from CT Image
    Lee, Sungjin
    Rim, Beanbonyka
    Jou, Sung-Shick
    Gil, Hyo-Wook
    Jia, Xibin
    Lee, Ahyoung
    Hong, Min
    SENSORS, 2021, 21 (21)
  • [26] Image Forgery Detection Using Deep Learning by Recompressing Images
    Ali, Syed Sadaf
    Ganapathi, Iyyakutti Iyappan
    Ngoc-Son Vu
    Ali, Syed Danish
    Saxena, Neetesh
    Werghi, Naoufel
    ELECTRONICS, 2022, 11 (03)
  • [27] Splicing Image Forgery Detection by Deploying Deep Learning Model
    Krishnamoorthy, N.
    Amuthadevi, C.
    Geedtha, M.K.
    Reddy, Poli Lokeshwara
    Anitha Rani, K.S.
    Gopinathan, R.
    International Conference on Automation, Computing and Renewable Systems, ICACRS 2022 - Proceedings, 2022, : 1116 - 1120
  • [28] Deep-learning-based image preprocessing for particle image velocimetry
    Fan, Yiwei
    Guo, Chunyu
    Han, Yang
    Qiao, Weizheng
    Xu, Peng
    Kuai, Yunfei
    APPLIED OCEAN RESEARCH, 2023, 130
  • [29] Hybrid deep-learning framework for object-based forgery detection in video
    Tan, Shunquan
    Chen, Baoying
    Zeng, Jishen
    Li, Bin
    Huang, Jiwu
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 105
  • [30] A Review on Deep-Learning-Based Cyberbullying Detection
    Hasan, Md. Tarek
    Hossain, Md. Al Emran
    Mukta, Md. Saddam Hossain
    Akter, Arifa
    Ahmed, Mohiuddin
    Islam, Salekul
    FUTURE INTERNET, 2023, 15 (05)