Lightweight transformer and multi-head prediction network for no-reference image quality assessment

被引:3
|
作者
Tang, Zhenjun [1 ]
Chen, Yihua [1 ]
Chen, Zhiyuan [1 ]
Liang, Xiaoping [1 ]
Zhang, Xianquan [1 ]
机构
[1] Guangxi Normal Univ, Key Lab Educ Blockchain & Intelligent Technol, Minist Educ, Guilin 541004, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2024年 / 36卷 / 04期
基金
中国国家自然科学基金;
关键词
Lightweight transformer; Multi-head prediction; Channel attention; Image quality assessment; NATURAL SCENE STATISTICS;
D O I
10.1007/s00521-023-09188-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
No-reference (NR) image quality assessment (IQA) is an important task of computer vision. Most NR-IQA methods via deep neural networks do not reach desirable IQA performance and have bulky models which make them difficult to be used in the practical scenarios. This paper proposes a lightweight transformer and multi-head prediction network for NR-IQA. The proposed method consists of two lightweight modules: feature extraction and multi-head prediction. The module of feature extraction exploits lightweight transformer blocks to learn features at different scales for measuring different image distortions. The module of multi-head prediction uses three weighted prediction blocks and an FC layer to aggregate the learned features for predicting image quality score. The weighted prediction block can measure the importance of different elements of input feature at the same scale. Since the importance of feature elements at the same scale and the importance of the features at different scales are both considered, the module of multi-head prediction can provide more accurate prediction results. Extensive experiments on the standard IQA datasets are conducted. The results show that the proposed method outperforms some baseline NR-IQA methods in IQA performance on the large image datasets. For the model complexity, the proposed method is also superior to several recent NR-IQA methods.
引用
收藏
页码:1947 / 1957
页数:11
相关论文
共 50 条
  • [41] No-Reference Image Quality Assessment for Facial Images
    Bhattacharjee, Debalina
    Prakash, Surya
    Gupta, Phalguni
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 594 - 601
  • [42] No-Reference Image Quality Assessment Based on HVS
    Fu, Yan
    Wang, Shengchun
    2016 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C), 2016, : 1093 - 1096
  • [43] MFAN: A Multi-Projection Fusion Attention Network for No-Reference and Full-Reference Panoramic Image Quality Assessment
    Li, Huanyang
    Zhang, Xinfeng
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1207 - 1211
  • [44] No-reference synthetic image quality assessment with convolutional neural network and local image saliency
    Xiaochuan Wang
    Xiaohui Liang
    Bailin Yang
    Frederick W. B. Li
    Computational Visual Media, 2019, 5 : 193 - 208
  • [45] No-reference visual quality assessment for image inpainting
    Voronin, V. V.
    Frantc, V. A.
    Marchuk, V. I.
    Sherstobitov, A. I.
    Egiazarian, K.
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XIII, 2015, 9399
  • [46] A No-Reference Image Quality Comprehensive Assessment Method
    Fan, Yuan-Yuan
    Sang, Ying-Jun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [47] No-Reference Quality Assessment for Image Sharpness and Noise
    Tang, Lijuan
    Min, Xiongkuo
    Jakhetiya, Vinit
    Gu, Ke
    Zhang, Xinfeng
    Yang, Shuai
    2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2016,
  • [48] The Effect of Uncertainty on No-Reference Image Quality Assessment
    Raei, Mohammadreza
    Mansouri, Azadeh
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 223 - 227
  • [49] NO-REFERENCE IMAGE QUALITY ASSESSMENT BASED ON FILTERING
    Lu, Fang-Fang
    Lu, Lu
    Wang, Zhen
    MATERIAL ENGINEERING AND MECHANICAL ENGINEERING (MEME2015), 2016, : 929 - 937
  • [50] No-reference synthetic image quality assessment with convolutional neural network and local image saliency
    Xiaochuan Wang
    Xiaohui Liang
    Bailin Yang
    Frederick W.B.Li
    ComputationalVisualMedia, 2019, 5 (02) : 193 - 208