Lightweight transformer and multi-head prediction network for no-reference image quality assessment

被引:3
|
作者
Tang, Zhenjun [1 ]
Chen, Yihua [1 ]
Chen, Zhiyuan [1 ]
Liang, Xiaoping [1 ]
Zhang, Xianquan [1 ]
机构
[1] Guangxi Normal Univ, Key Lab Educ Blockchain & Intelligent Technol, Minist Educ, Guilin 541004, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2024年 / 36卷 / 04期
基金
中国国家自然科学基金;
关键词
Lightweight transformer; Multi-head prediction; Channel attention; Image quality assessment; NATURAL SCENE STATISTICS;
D O I
10.1007/s00521-023-09188-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
No-reference (NR) image quality assessment (IQA) is an important task of computer vision. Most NR-IQA methods via deep neural networks do not reach desirable IQA performance and have bulky models which make them difficult to be used in the practical scenarios. This paper proposes a lightweight transformer and multi-head prediction network for NR-IQA. The proposed method consists of two lightweight modules: feature extraction and multi-head prediction. The module of feature extraction exploits lightweight transformer blocks to learn features at different scales for measuring different image distortions. The module of multi-head prediction uses three weighted prediction blocks and an FC layer to aggregate the learned features for predicting image quality score. The weighted prediction block can measure the importance of different elements of input feature at the same scale. Since the importance of feature elements at the same scale and the importance of the features at different scales are both considered, the module of multi-head prediction can provide more accurate prediction results. Extensive experiments on the standard IQA datasets are conducted. The results show that the proposed method outperforms some baseline NR-IQA methods in IQA performance on the large image datasets. For the model complexity, the proposed method is also superior to several recent NR-IQA methods.
引用
收藏
页码:1947 / 1957
页数:11
相关论文
共 50 条
  • [21] No-Reference Stereoscopic Image Quality Assessment
    Akhter, Roushain
    Sazzad, Z. M. Parvez
    Horita, Y.
    Baltes, J.
    STEREOSCOPIC DISPLAYS AND APPLICATIONS XXI, 2010, 7524
  • [22] Content-adaptive Efficient Transformer for No-Reference Underwater Image Quality Assessment
    Zhu, Pengli
    Ma, Huan
    Ma, Kuangqi
    Liu, Yancheng
    Liu, Siyuan
    OCEANS 2024 - SINGAPORE, 2024,
  • [23] No-reference image quality assessment based on improved vision transformer and transfer learning
    Zhang, Bo
    Wang, Luoxi
    Zhang, Cheng
    Zhao, Ran
    Sun, Jinlu
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 135
  • [24] No-reference Image Denoising Quality Assessment
    Lu, Si
    ADVANCES IN COMPUTER VISION, CVC, VOL 1, 2020, 943 : 416 - 433
  • [25] Automatic no-reference image quality assessment
    Li, Hongjun
    Hu, Wei
    Xu, Zi-neng
    SPRINGERPLUS, 2016, 5
  • [26] No-Reference Fingerprint Image Quality Assessment
    Tiwari, Kamlesh
    Gupta, Phalguni
    INTELLIGENT COMPUTING METHODOLOGIES, 2014, 8589 : 846 - 854
  • [27] Towards no-reference image quality assessment based on multi-scale convolutional neural network
    Ma, Yao
    Cai, Xibiao
    Sun, Fuming
    CMES - Computer Modeling in Engineering and Sciences, 2020, 123 (01): : 201 - 216
  • [28] Towards No-Reference Image Quality Assessment Based on Multi-Scale Convolutional Neural Network
    Ma, Yao
    Cai, Xibiao
    Sun, Fuming
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 123 (01): : 201 - 216
  • [29] Multi-view aggregation transformer for no-reference point cloud quality assessment
    Mu, Baoyang
    Shao, Feng
    Chai, Xiongli
    Liu, Qiang
    Chen, Hangwei
    Jiang, Qiuping
    DISPLAYS, 2023, 78
  • [30] A multi-scale no-reference video quality assessment method based on transformer
    Cui, Yingan
    Yu, Zonghua
    Feng, Yuqin
    Wang, Huaijun
    Li, Junhuai
    MULTIMEDIA SYSTEMS, 2024, 30 (04)