User Cold-Start Recommendation via Inductive Heterogeneous Graph Neural Network

被引:32
|
作者
Cai, Desheng [1 ]
Qian, Shengsheng [2 ]
Fang, Quan [2 ]
Hu, Jun [2 ]
Xu, Changsheng [2 ]
机构
[1] Hefei Univ Technol, Sch Comp Sci & Informat Engn, 485 Danxia Rd, Hefei City 230601, Anhui Province, Peoples R China
[2] Chinese Acad Sci, Inst tute Automat, Natl Lab Pattern Recognit, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Multimodal; Heterogeneous Graph; user cold-start recommendation; INFORMATION;
D O I
10.1145/3560487
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, user cold-start recommendations have attracted a lot of attention from industry and academia. In user cold-start recommendation systems, the user attribute information is often used by existing approaches to learn user preferences due to the unavailability of user action data. However, most existing recommendation methods often ignore the sparsity of user attributes in cold-start recommendation systems. To tackle this limitation, this article proposes a novel Inductive Heterogeneous Graph Neural Network (IHGNN) model, which utilizes the relational information in user cold-start recommendation systems to alleviate the sparsity of user attributes. Our model converts new users, items, and associated multimodal information into a Modality-aware Heterogeneous Graph (M-HG) that preserves the rich and heterogeneous relationship information among them. Specifically, to utilize rich and heterogeneous relational information in an M-HG for enriching the sparse attribute information of new users, we design a strategy based on random walk operations to collect associated neighbors of new users by multiple times sampling operation. Then, a well-designed multiple hierarchical attention aggregationmodel consisting of the intra- and inter-type attention aggregating module is proposed, focusing on useful connected neighbors and neglecting meaningless and noisy connected neighbors to generate high-quality representations for user cold-start recommendations. Experimental results on three real datasets demonstrate that the IHGNN outperforms the state-of-the-art baselines.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Research For Cold-start Problem In Network-based Recommendation Algorithm
    Liu, Limin
    Zhang, Chenyang
    Ma, Zhiqiang
    Xiao, Yuhong
    PROGRESS IN MECHATRONICS AND INFORMATION TECHNOLOGY, PTS 1 AND 2, 2014, 462-463 : 861 - 867
  • [42] GoRec: A Generative Cold-Start Recommendation Framework
    Bai, Haoyue
    Hou, Min
    Wu, Le
    Yang, Yonghui
    Zhang, Kun
    Hong, Richang
    Wang, Meng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1004 - 1012
  • [43] Rating information entropy for cold-start recommendation
    Zhang, Fuzhi
    Liu, Huilin
    Cui, Yongqiang
    Journal of Information and Computational Science, 2011, 8 (01): : 16 - 22
  • [44] Improving the Personalized Recommendation in the Cold-start Scenarios
    Gaspar, Peter
    Koncal, Matej
    Kompan, Michal
    Bielikova, Maria
    2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, : 606 - 607
  • [45] M2EU: Meta Learning for Cold-start Recommendation via Enhancing User Preference Estimation
    Wu, Zhenchao
    Zhou, Xiao
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1158 - 1167
  • [46] Aligning Distillation For Cold-start Item Recommendation
    Huang, Feiran
    Wang, Zefan
    Huang, Xiao
    Qian, Yufeng
    Li, Zhetao
    Chen, Hao
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1147 - 1157
  • [47] Functional Matrix Factorizations for Cold-Start Recommendation
    Zhou, Ke
    Yang, Shuang-Hong
    Zha, Hongyuan
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 315 - 324
  • [48] Deep Pairwise Hashing for Cold-Start Recommendation
    Zhang, Yan
    Tsang, Ivor W.
    Yin, Hongzhi
    Yang, Guowu
    Lian, Defu
    Li, Jingjing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3169 - 3181
  • [49] Feature Matching Machine for Cold-Start Recommendation
    Wu, Hanrui
    Li, Nuosi
    Kwok, Ka Ho
    Cai, Xuheng
    Zhang, Jia
    Long, Jinyi
    Ng, Michael K.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (01) : 98 - 112
  • [50] Cold-Start Recommendation for On-Demand Cinemas
    Li, Beibei
    Jin, Beihong
    Xue, Taofeng
    Liu, Kunchi
    Zhang, Qi
    Tian, Sihua
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 499 - 515