Deep Pairwise Hashing for Cold-Start Recommendation

被引:5
|
作者
Zhang, Yan [1 ,2 ]
Tsang, Ivor W. [2 ]
Yin, Hongzhi [3 ]
Yang, Guowu [1 ]
Lian, Defu [4 ]
Li, Jingjing [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW 2007, Australia
[3] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4067, Australia
[4] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Recommender systems; Machine learning; Indexes; Collaboration; Binary codes; Robustness; Noise reduction; Recommender system; denosing auto-encoder; hash code; cold-start;
D O I
10.1109/TKDE.2020.3024022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommendation efficiency and data sparsity problems have been regarded as two challenges of improving performance for online recommendation. Most of the previous related work focus on improving recommendation accuracy instead of efficiency. In this paper, we propose a Deep Pairwise Hashing (DPH) to map users and items to binary vectors in Hamming space, where a user's preference for an item can be efficiently calculated by Hamming distance, which significantly improves the efficiency of online recommendation. To alleviate data sparsity and cold-start problems, the user-item interactive information and item content information are unified to learn effective representations of items and users. Specifically, we first pre-train robust item representation from item content data by a Denoising Auto-encoder instead of other deterministic deep learning frameworks; then we finetune the entire framework by adding a pairwise loss objective with discrete constraints; moreover, DPH aims to minimize a pairwise ranking loss that is consistent with the ultimate goal of recommendation. Finally, we adopt the alternating optimization method to optimize the proposed model with discrete constraints. Extensive experiments on three different datasets show that DPH can significantly advance the state-of-the-art frameworks regarding data sparsity and item cold-start recommendation.
引用
收藏
页码:3169 / 3181
页数:13
相关论文
共 50 条
  • [1] Content-aware Neural Hashing for Cold-start Recommendation
    Hansen, Casper
    Hansen, Christian
    Simonsen, Jakob Grue
    Alstrup, Stephen
    Lioma, Christina
    [J]. PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 971 - 980
  • [2] Collaborative Generative Hashing for Marketing and Fast Cold-Start Recommendation
    Zhang, Yan
    Tsang, Ivor W.
    Duan, Lixin
    [J]. IEEE INTELLIGENT SYSTEMS, 2020, 35 (05) : 84 - 95
  • [3] Contrastive Learning for Cold-Start Recommendation
    Wei, Yinwei
    Wang, Xiang
    Li, Qi
    Nie, Liqiang
    Li, Yan
    Li, Xuanping
    Chua, Tat-Seng
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5382 - 5390
  • [4] Variational cold-start resistant recommendation
    Walker, Joojo
    Zhang, Fengli
    Zhong, Ting
    Zhou, Fan
    Baagyere, Edward Yellakuor
    [J]. INFORMATION SCIENCES, 2022, 605 : 267 - 285
  • [5] A Deep Neural Network With Multiplex Interactions for Cold-Start Service Recommendation
    Ma, Yutao
    Geng, Xiao
    Wang, Jian
    [J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2021, 68 (01) : 105 - 119
  • [6] GoRec: A Generative Cold-Start Recommendation Framework
    Bai, Haoyue
    Hou, Min
    Wu, Le
    Yang, Yonghui
    Zhang, Kun
    Hong, Richang
    Wang, Meng
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1004 - 1012
  • [7] Rating information entropy for cold-start recommendation
    Zhang, Fuzhi
    Liu, Huilin
    Cui, Yongqiang
    [J]. Journal of Information and Computational Science, 2011, 8 (01): : 16 - 22
  • [8] Improving the Personalized Recommendation in the Cold-start Scenarios
    Gaspar, Peter
    Koncal, Matej
    Kompan, Michal
    Bielikova, Maria
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, : 606 - 607
  • [9] Feature Matching Machine for Cold-Start Recommendation
    Wu, Hanrui
    Li, Nuosi
    Kwok, Ka Ho
    Cai, Xuheng
    Zhang, Jia
    Long, Jinyi
    Ng, Michael K.
    [J]. IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (01) : 98 - 112
  • [10] Functional Matrix Factorizations for Cold-Start Recommendation
    Zhou, Ke
    Yang, Shuang-Hong
    Zha, Hongyuan
    [J]. PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 315 - 324