Towards identifying influential nodes in complex networks using semi-local centrality metrics

被引:13
|
作者
Zhang, Kun [1 ]
Zhou, Yu [1 ]
Long, Haixia [1 ]
Wang, Chaoyang [2 ]
Hong, Haizhuang [2 ]
Armaghan, Seyed Mostafa [3 ]
机构
[1] Hainan Normal Univ, Sch Informat Sci & Technol, Haikou 571158, Hainan, Peoples R China
[2] CETC Guohaixintong Technol Hainan Co Ltd, Sansha 570203, Hainan, Peoples R China
[3] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
关键词
Complex networks; Influential nodes; Centrality metrics; Semi-local centrality; Average shortest path; FEEDBACK NONLINEAR-SYSTEMS; ADAPTIVE TRACKING CONTROL;
D O I
10.1016/j.jksuci.2023.101798
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The influence of the node refers to the ability of the node to disseminate information. The faster and wider the node spreads, the greater its influence. There are many classical topological metrics that can be used to evaluate the influencing ability of nodes. Degree centrality, betweenness centrality, closeness centrality and local centrality are among the most common metrics for identifying influential nodes in complex networks. Degree centrality is very simple but not very effective. Global metrics such as betweenness centrality and closeness centrality can better identify influential nodes, but they are not compatible on large-scale networks due to their high complexity. In order to design a ranking method of influential nodes, in this paper a new semi-local centrality metric is proposed based on the relative change in the average shortest path of the entire network. Meanwhile, our metric provides a quantitative global importance model to measure the overall influence of each node. To evaluate the performance of the proposed centrality metric, we use the Susceptible-Infected-Recovered (SIR) epidemic model. Experimental results on several real-world networks show that the proposed metric has competitive performance in identifying influential nodes with existing equivalent centrality metrics and has high efficiency in dealing with large-scale networks. The effectiveness of the proposed metric has been proven with numerical examples and Kendall's coefficient.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A new Centrality Measure for Identifying Influential Nodes in Social Networks
    Rhouma, Delel
    Ben Romdhane, Lotfi
    TENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2017), 2018, 10696
  • [22] A Novel Centrality of Influential Nodes Identification in Complex Networks
    Yang, Yuanzhi
    Wang, Xing
    Chen, You
    Hu, Min
    Ruan, Chengwei
    IEEE ACCESS, 2020, 8 : 58742 - 58751
  • [23] Identifying influential nodes in complex networks based on global and local structure
    Sheng, Jinfang
    Dai, Jinying
    Wang, Bin
    Duan, Guihua
    Long, Jun
    Zhang, Junkai
    Guan, Kerong
    Hu, Sheng
    Chen, Long
    Guan, Wanghao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 541
  • [24] Identifying Influential Nodes in Complex Networks Based on Local Effective Distance
    Zhang, Junkai
    Wang, Bin
    Sheng, Jinfang
    Dai, Jinying
    Hu, Jie
    Chen, Long
    INFORMATION, 2019, 10 (10)
  • [25] Identifying influential nodes based on fuzzy local dimension in complex networks
    Wen, Tao
    Jiang, Wen
    CHAOS SOLITONS & FRACTALS, 2019, 119 : 332 - 342
  • [26] Identifying Influential Nodes in Complex Networks Based on Local Neighbor Contribution
    Dai, Jinying
    Wang, Bin
    Sheng, Jinfang
    Sun, Zejun
    Khawaja, Faiza Riaz
    Ullah, Aman
    Dejene, Dawit Aklilu
    Duan, Guihua
    IEEE ACCESS, 2019, 7 : 131719 - 131731
  • [27] Evaluating Influential Nodes in Social Networks by Local Centrality with a Coefficient
    Zhao, Xiaohui
    Liu, Fang'ai
    Wang, Jinlong
    Li, Tianlai
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (02)
  • [28] Identifying influential nodes in social networks via improved Laplacian centrality
    Zhu, Xiaoyu
    Hao, Rongxia
    CHAOS SOLITONS & FRACTALS, 2024, 189
  • [29] Identifying influential spreaders in complex networks based on network embedding and node local centrality
    Yang, Xu-Hua
    Xiong, Zhen
    Ma, Fangnan
    Chen, Xiaoze
    Ruan, Zhongyuan
    Jiang, Peng
    Xu, Xinli
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 573
  • [30] Identifying influential nodes in complex networks based on improved local gravity model
    Wu, Yongqing
    Tang, Tianchang
    PRAMANA-JOURNAL OF PHYSICS, 2025, 99 (01):