Tracking the Role of Defect Types in Co3O4 Structural Evolution and Active Motifs during Oxygen Evolution Reaction

被引:242
|
作者
Zhang, Rongrong [1 ,2 ]
Pan, Lun [1 ,5 ]
Guo, Beibei [1 ]
Huang, Zhen-Feng [1 ,4 ]
Chen, Zhongxin [3 ]
Wang, Li [1 ,5 ]
Zhang, Xiangwen [1 ,5 ]
Guo, Zhiying [6 ]
Xu, Wei [6 ]
Loh, Kian Ping [2 ]
Zou, Ji-Jun [1 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[3] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[4] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[5] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[6] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
COBALT OXIDE; COOOH; IDENTIFICATION; TRANSITION; CONVERSION; NANOSHEETS; VACANCIES; STATE; TIO2;
D O I
10.1021/jacs.2c10515
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dynamic reconstruction of catalyst active sites is particularly important for metal oxide-catalyzed oxygen evolution reaction (OER). However, the mechanism of how vacancy-induced reconstruction aids OER remains ambiguous. Here, we use Co3O4 with Co or O vacancies to uncover the effects of different defects in the reconstruction process and the active motifs relevant to alkaline OER. Combining in situ characterization and theoretical calculations, we found that cobalt oxides are converted to an amorphous [Co(OH)(6)] intermediate state, and then the mismatched rates of *OH adsorption and deprotonation lead to irreversible catalyst reconstruction. The stronger *OH adsorption but weaker deprotonation induced by O defects provides the driving force for reconstruction, while Co defects favor dehydrogenation and reduce the reconstruction rate. Importantly, both O and Co defects trigger highly OER-active bridge Co sites in reconstructed catalysts, of which Co defects induce a short Co-Co distance (3.38 angstrom) under compressive lattice stress and show the best OER activity (eta(10) of 262 mV), superior to reconstructed oxygen-defected Co3O4-VO (eta(10) of 300 mV) and defect-free Co3O4 (eta(10) of 320 mV). This work highlights that engineering defect-dependent reconstruction may provide a rational route for electrocatalyst design in energy-related applications.
引用
收藏
页码:2271 / 2281
页数:11
相关论文
共 50 条
  • [41] Functionalized Co3O4 graphitic nanoparticles: A high performance electrocatalyst for the oxygen evolution reaction
    Srinivasa, N.
    Shreenivasa, L.
    Adarakatti, Prashanth S.
    Crapnell, Robert D.
    Rowley-Neale, Samuel J.
    Siddaramanna, Ashoka
    Banks, Craig E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31380 - 31388
  • [42] Synthesis of urchin-like Co3O4 spheres for application in oxygen evolution reaction
    Li, Yiyi
    Zhang, Lei
    Peng, Kun
    NANOTECHNOLOGY, 2018, 29 (48)
  • [43] Ir-doped Co3O4 as efficient electrocatalyst for acidic oxygen evolution reaction
    Xie, Yusheng
    Su, Yanyan
    Qin, Haoran
    Cao, Zhilin
    Wei, Hehe
    Wu, Fengchi
    Ou, Gang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (39) : 14642 - 14649
  • [44] Effect of the Size and Shape on the Electrocatalytic Activity of Co3O4 Nanoparticles in the Oxygen Evolution Reaction
    Saddeler, S.
    Hagemann, U.
    Schulz, S.
    INORGANIC CHEMISTRY, 2020, 59 (14) : 10013 - 10024
  • [45] Controlled Synthesis of Co3O4 Electrocatalysts with Different Morphologies and Their Application for Oxygen Evolution Reaction
    Liu, Suxian
    Zhang, Rui
    Lv, Weixin
    Kong, Fenying
    Wang, Wei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (04): : 3843 - 3854
  • [46] Co3O4 derived ZnO: An effective electrocatalyst for oxygen evolution reaction in alkaline media
    Hanan, Abdul
    Lakhan, Muhammad Nazim
    Walvekar, Rashmi
    Ubaidullah, Mohd
    Al-Kahtani, Abdullah A.
    Khalid, Mohammad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 104 : 407 - 415
  • [47] In Situ Mn-Doping-Promoted Conversion of Co(OH)2 to Co3O4 as an Active Electrocatalyst for Oxygen Evolution Reaction
    Raj, Shipra
    Anantharaj, Sengeni
    Kundu, Subrata
    Roy, Poulomi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (10) : 9690 - 9698
  • [48] MECHANISM OF OXYGEN EVOLUTION ON LI-DOPED CO3O4
    RASIYAH, P
    TSEUNG, ACC
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (03) : C131 - C131
  • [49] Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution
    Bocca, C
    Cerisola, G
    Magnone, E
    Barbucci, A
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1999, 24 (08) : 699 - 707
  • [50] Operando Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co3O4 for Oxygen Evolution Reaction
    Xiao, Zhaohui
    Huang, Yu-Cheng
    Dong, Chung-Li
    Xie, Chao
    Liu, Zhijuan
    Du, Shiqian
    Chen, Wei
    Yan, Dafeng
    Tao, Li
    Shu, Zhiwen
    Zhang, Guanhua
    Duan, Huigao
    Wang, Yanyong
    Zou, Yuqin
    Chen, Ru
    Wang, Shuangyin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (28) : 12087 - 12095