Tracking the Role of Defect Types in Co3O4 Structural Evolution and Active Motifs during Oxygen Evolution Reaction

被引:242
|
作者
Zhang, Rongrong [1 ,2 ]
Pan, Lun [1 ,5 ]
Guo, Beibei [1 ]
Huang, Zhen-Feng [1 ,4 ]
Chen, Zhongxin [3 ]
Wang, Li [1 ,5 ]
Zhang, Xiangwen [1 ,5 ]
Guo, Zhiying [6 ]
Xu, Wei [6 ]
Loh, Kian Ping [2 ]
Zou, Ji-Jun [1 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[3] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[4] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[5] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[6] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
COBALT OXIDE; COOOH; IDENTIFICATION; TRANSITION; CONVERSION; NANOSHEETS; VACANCIES; STATE; TIO2;
D O I
10.1021/jacs.2c10515
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dynamic reconstruction of catalyst active sites is particularly important for metal oxide-catalyzed oxygen evolution reaction (OER). However, the mechanism of how vacancy-induced reconstruction aids OER remains ambiguous. Here, we use Co3O4 with Co or O vacancies to uncover the effects of different defects in the reconstruction process and the active motifs relevant to alkaline OER. Combining in situ characterization and theoretical calculations, we found that cobalt oxides are converted to an amorphous [Co(OH)(6)] intermediate state, and then the mismatched rates of *OH adsorption and deprotonation lead to irreversible catalyst reconstruction. The stronger *OH adsorption but weaker deprotonation induced by O defects provides the driving force for reconstruction, while Co defects favor dehydrogenation and reduce the reconstruction rate. Importantly, both O and Co defects trigger highly OER-active bridge Co sites in reconstructed catalysts, of which Co defects induce a short Co-Co distance (3.38 angstrom) under compressive lattice stress and show the best OER activity (eta(10) of 262 mV), superior to reconstructed oxygen-defected Co3O4-VO (eta(10) of 300 mV) and defect-free Co3O4 (eta(10) of 320 mV). This work highlights that engineering defect-dependent reconstruction may provide a rational route for electrocatalyst design in energy-related applications.
引用
收藏
页码:2271 / 2281
页数:11
相关论文
共 50 条
  • [31] Silica-free Synthesis of Mesoporous Co3O4/CoOxPy as a Highly Active Oxygen Evolution Reaction Catalyst
    Sun, Tian
    Liu, Piao
    Yang, Daihui
    Wang, Qiyou
    Duan, Junfei
    Ma, Chao
    Gao, Yang
    Zhang, Shiguo
    CHEMNANOMAT, 2019, 5 (11) : 1390 - 1397
  • [32] BCNO Nanosheet Supported Co3O4 Nanoparticles as an Enhanced Electrocatalyst for Oxygen Evolution Reaction
    Ji, Xuefeng
    Li, Yingxin
    Jia, Xiaobo
    Yang, Xiaojing
    Li, Lanlan
    Yao, Yingwu
    Cheng, Yahui
    Zhang, Xinghua
    Lu, Zunming
    Liu, Hui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (06) : H177 - H181
  • [33] Mn-doped Co3O4 nanoarrays as a promising electrocatalyst for oxygen evolution reaction
    Ma, Yubo
    Zha, Meng
    Dong, Yemin
    Li, Lei
    Hu, Guangzhi
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11):
  • [34] Asymmetric Site-Enabled O-O Coupling in Co3O4 for Oxygen Evolution Reaction
    Cui, Minghui
    Guo, Rongjing
    Zhou, Yansong
    Zhao, Wenqi
    Liu, Yanjing
    Luo, Wenbo
    Ou, Qiongrong
    Zhang, Shuyu
    ACS CATALYSIS, 2024, 14 (21): : 16353 - 16362
  • [35] Template-free synthesis of Co3O4 microtubes for enhanced oxygen evolution reaction
    Hu, Jiani
    Zhang, Xiaofeng
    Xiao, Juan
    Li, Ruchun
    Wang, Yi
    Song, Shuqin
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (12) : 2275 - 2286
  • [36] Morphology control of Co3O4 with nickel incorporation for highly efficient oxygen evolution reaction
    Du, Hao
    Pu, Wenhong
    Yang, Changzhu
    APPLIED SURFACE SCIENCE, 2021, 541
  • [37] An advanced and efficient Co3O4/C nanocomposite for the oxygen evolution reaction in alkaline media
    Mugheri, Abdul Qayoom
    Tahira, Aneela
    Aftab, Umair
    Abro, Muhammad Ishaq
    Mallah, Arfana Begum
    Memon, Gulam Zuhra
    Khan, Humaira
    Abbasi, Mazhar Ali
    Halepoto, Imran Ali
    Chaudhry, Saleem Raza
    Ibupoto, Zafar Hussain
    RSC ADVANCES, 2019, 9 (59) : 34136 - 34143
  • [38] Be Aware of Transient Dissolution Processes in Co3O4 Acidic Oxygen Evolution Reaction Electrocatalysts
    Priamushko, Tatiana
    Franz, Evanie
    Logar, Anja
    Bijelic, Lazar
    Guggenberger, Patrick
    Escalera-Lopez, Daniel
    Zlatar, Matej
    Libuda, Joerg
    Kleitz, Freddy
    Hodnik, Nejc
    Brummel, Olaf
    Cherevko, Serhiy
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (04) : 3517 - 3528
  • [39] Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes
    Lu, Bangan
    Cao, Dianxue
    Wang, Pan
    Wang, Guiling
    Gao, Yinyi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) : 72 - 78
  • [40] Shape-controlled synthesis of Co3O4 for enhanced electrocatalysis of the oxygen evolution reaction
    Sidhureddy, Boopathi
    Dondapati, Jesse S.
    Chen, Aicheng
    CHEMICAL COMMUNICATIONS, 2019, 55 (25) : 3626 - 3629