Numerical analysis of the diffusion and explosion characteristics of hydrogen-air clouds in a plateau hydrogen refuelling station

被引:8
|
作者
Liu, Kun [1 ]
Jiang, Jieyu [1 ]
He, Canxing [1 ]
Lin, Simin [2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266100, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
关键词
Plateau hydrogen refuelling station; Air temperature; Hydrogen-air clouds; Overpressure; NATURAL-GAS; LEAKAGE; SCALE; SIMULATION; RISK; DETONATION;
D O I
10.1016/j.ijhydene.2023.07.155
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The investigation of hydrogen diffusion and explosion characteristics after accidental hydrogen leaks in hydrogen refuelling stations can provide the theoretical reference of the safe application of hydrogen refuelling stations. The numerical study analyses the effects of plateau environment on the dispersion and explosion characteristics of combustible clouds, visualises the diffusion and explosion process of hydrogen-air combustible clouds and quantifies the hydrogen concentration and explosion pressure at monitoring points. Results show that combustible clouds may appear upstream of the leak hole due to the presence of obstacles. The low atmospheric pressure conditions in the plateau areas result in high hydrogen concentration near the blast wall and large combustible cloud size. The hydrogen concentration near the blast wall and combustible cloud volume are also shown a positive correlation with air temperature, which will be detrimental to fire protection in hydrogen refuelling stations. After the explosion of the hydrogen clouds, the mortality zone (explosion overpressure >= 0.69 bar) is observed near the blast wall and at high leak volumes, the hazardous zone (0.07 bar <= explosion overpressure <= 0.69 bar) may spread over the blast wall into the crowded area. However, the blast wall blocks the development of the high-temperature zone, which has a positive effect on preventing the spread of the explosion flame. An examination of the pressure monitoring point data reveals that there appears to be an opposite effect of atmospheric pressure on the positive and reverse overpressure. The maximum peak blast overpressure in calculated domain indicates that both higher air temperatures and atmospheric pressures promote the growth of explosion overpressure.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:40101 / 40116
页数:16
相关论文
共 50 条
  • [21] VENTED EXPLOSION OF HYDROGEN-AIR MIXTURES IN A LARGE VOLUME
    KUMAR, RK
    DEWIT, WA
    GREIG, DR
    COMBUSTION SCIENCE AND TECHNOLOGY, 1989, 66 (4-6) : 251 - 266
  • [22] Explosion hazard of hydrogen-air mixtures in the large volumes
    Petukhov, V. A.
    Naboko, I. M.
    Fortov, V. E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (14) : 5924 - 5931
  • [23] Effect of ignition location on external explosion in hydrogen-air explosion venting
    Cao, Yong
    Guo, Jin
    Hu, Kunlun
    Xie, Lifeng
    Li, Bin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (15) : 10547 - 10554
  • [24] Experimental and numerical study on explosion behavior of hydrogen-air mixture in an obstructed closed chamber
    Jiang, Yuting
    Gao, Wei
    Sun, Zuo
    Liang, Bo
    Zhang, Kai
    Li, Yanchao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 1032 - 1045
  • [25] Ignition time of hydrogen-air diffusion flames
    Sanchez, Antonio L.
    Fernandez-Tarrazo, Eduardo
    Boivin, Pierre
    Linan, Amable
    Williams, Forman A.
    COMPTES RENDUS MECANIQUE, 2012, 340 (11-12): : 882 - 893
  • [26] Theory of structures of hydrogen-air diffusion flames
    Sanchez, AL
    Linan, A
    Williams, FA
    Balakrishnan, G
    COMBUSTION SCIENCE AND TECHNOLOGY, 1995, 111 : 277 - 301
  • [27] Pressure release characteristics of premixed hydrogen-air mixtures in an explosion venting device with a duct
    Cao, Weiguo
    Liu, Yifei
    Chen, Renkang
    Li, Wenjuan
    Zhang, Yun
    Xu, Sen
    Cao, Xiong
    Huang, Que
    Tan, Yingxin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (12) : 8810 - 8819
  • [28] INTERNAL STRUCTURE OF HYDROGEN-AIR DIFFUSION FLAMES
    DARIVA, I
    ASTRONAUTICA ACTA, 1966, 12 (04): : 284 - &
  • [29] NUMERICAL STUDY OF THE INJECTION CONDITIONS EFFECT ON THE BEHAVIOR OF HYDROGEN-AIR DIFFUSION FLAME
    Boukhelef, Mohamed
    Alliche, Mounir
    Senouci, Mohammed
    Merouane, Habib
    THERMAL SCIENCE, 2022, 26 (05): : 3741 - 3750
  • [30] Numerical simulation of supersonic hydrogen-air combustion
    von Lavante, E
    Kallenberg, M
    Zeitz, D
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '99, 2000, : 295 - 303