Adaptive multigrid method for quantum eigenvalue problems

被引:0
|
作者
Xu, Fei [1 ]
Wang, Bingyi [1 ]
Luo, Fusheng [2 ]
机构
[1] Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Fac Sci, Beijing 100124, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 3, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Electronic structure calculations; Nonlinear eigenvalue model; Finite element method; Adaptive multigrid method; Convergence; FINITE-ELEMENT METHODS; A-POSTERIORI; ORBITAL-FREE; TOTAL-ENERGY; CONVERGENCE; DISCRETIZATION; APPROXIMATIONS; ALGORITHMS; COMPLEXITY; SCHEME;
D O I
10.1016/j.cam.2023.115445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new type of adaptive finite element method is proposed for nonlinear eigenvalue problems in electronic structure calculations based on the multilevel correction method and adaptive multigrid method. Different from the classical adaptive finite element method for electronic structure calculations which needs to solve a nonlinear eigenvalue model directly in each adaptive finite element space, our approach only needs to solve a linear elliptic boundary value problem by adaptive multigrid method in each adaptive space, and then correct the eigenpair approximation by solving a smallscale nonlinear eigenvalue model in a low-dimensional correction space. Since solving large-scale nonlinear eigenvalue model is avoided which has exponentially increased computational time, the efficiency of electronic structure calculations can be improved evidently. In addition, the corresponding convergence analysis of the proposed adaptive multigrid algorithm are also derived theoretically and numerically. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] An iterative adaptive finite element method for elliptic eigenvalue problems
    Solin, Pavel
    Giani, Stefano
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4582 - 4599
  • [32] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    Carstensen, C.
    Gedicke, J.
    Mehrmann, V.
    Miedlar, A.
    NUMERISCHE MATHEMATIK, 2014, 128 (04) : 615 - 634
  • [33] A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering
    Xie, Manting
    Xu, Fei
    Yue, Meiling
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05): : 1779 - 1802
  • [34] Nonlinear Diffusion Acceleration Method with Multigrid in Energy for k-Eigenvalue Neutron Transport Problems
    Cornejo, Luke R.
    Anistratov, Dmitriy Y.
    NUCLEAR SCIENCE AND ENGINEERING, 2016, 184 (04) : 514 - 526
  • [35] Eigenvalue method for open-boundary quantum transmission problems
    Shao, Zhi-an
    Porod, Wolfgang
    Lent, Craig S.
    Kirkner, David J.
    Journal of Applied Physics, 1995, 78 (04):
  • [36] AN EIGENVALUE METHOD FOR OPEN-BOUNDARY QUANTUM TRANSMISSION PROBLEMS
    SHAO, ZA
    POROD, W
    LENT, CS
    KIRKNER, DJ
    JOURNAL OF APPLIED PHYSICS, 1995, 78 (04) : 2177 - 2186
  • [37] PARALLEL IMPLEMENTATION AND PERFORMANCE OF MULTIGRID ALGORITHMS FOR SOLVING EIGENVALUE PROBLEMS
    HWANG, T
    PARSONS, ID
    COMPUTERS & STRUCTURES, 1994, 50 (03) : 325 - 336
  • [38] Multigrid methods for nearly singular linear equations and eigenvalue problems
    Cai, ZQ
    Mandel, J
    McCormick, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) : 178 - 200
  • [39] Iteration Methods with Multigrid in Energy for Eigenvalue Neutron Diffusion Problems
    Cornejo, Luke R.
    Anistratov, Dmitriy Y.
    Smith, Kord
    NUCLEAR SCIENCE AND ENGINEERING, 2019, 193 (08) : 803 - 827
  • [40] An adaptive multigrid method for EIT
    Zhao, Bo
    Wang, Huaxiang
    Hu, Li
    Xu, L.
    Yan, Y.
    2007 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2007, : 225 - +