Post quantum Ostrowski-type inequalities for coordinated convex functions

被引:0
|
作者
Wannalookkhee, Fongchan [1 ]
Nonlaopon, Kamsing [1 ]
Ntouyas, Sortiris K. [2 ,3 ]
Budak, Huseyin [4 ]
机构
[1] Khon Kaen Univ, Dept Math, Khon Kaen, Thailand
[2] Univ Ioannina, Dept Math, Ioannina, Greece
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah, Saudi Arabia
[4] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
关键词
convex function; coordinated convex function; Ostrowski inequality; (p; q)-derivative; q)-integral; q)-calculus; HADAMARD INEQUALITY; ANALOGS; (P;
D O I
10.1002/mma.8748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we give a new notion of (p, q) derivatives for continuous functions on coordinates. We also derive post quantum Ostrowski-type inequalities for coordinated convex functions. Our significant results are considered as the generalizations of other results that appeared in the literature.
引用
收藏
页码:4159 / 4183
页数:25
相关论文
共 50 条
  • [41] NEW OSTROWSKI-TYPE INEQUALITIES AND THEIR APPLICATIONS IN TWO COORDINATES
    Farid, G.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2016, 85 (01): : 107 - 112
  • [42] GRUSS-TYPE AND OSTROWSKI-TYPE INEQUALITIES IN APPROXIMATION THEORY
    Acu, A. M.
    Gonska, H.
    Rasa, I.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (06) : 843 - 864
  • [43] Montgomery Identity and Ostrowski-Type Inequalities for Generalized Quantum Calculus through Convexity and Their Applications
    Kalsoom, Humaira
    Vivas-Cortez, Miguel
    Abidin, Muhammad Zainul
    Marwan, Muhammad
    Khan, Zareen A.
    [J]. SYMMETRY-BASEL, 2022, 14 (07):
  • [44] Ostrowski-type inequalities for fuzzy-valued functions and its applications in quadrature theory
    Costa, T. M.
    Flores-Franulic, A.
    Chalco-Cano, Y.
    Aguirre-Cipe, I.
    [J]. INFORMATION SCIENCES, 2020, 529 : 101 - 115
  • [45] Grüss-type and Ostrowski-type inequalities in approximation theory
    A. M. Acu
    H. Gonska
    I. Raşa
    [J]. Ukrainian Mathematical Journal, 2011, 63 : 843 - 864
  • [46] OSTROWSKI TYPE INEQUALITIES FOR m- AND (α, m)-LOGARITMICALLY CONVEX FUNCTIONS
    Kavurmaci, Havva
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (05) : 820 - 826
  • [47] Weighted Ostrowski type inequalities for co-ordinated convex functions
    Hüseyin Budak
    [J]. Journal of Inequalities and Applications, 2022
  • [48] Weighted Cebysev- and Ostrowski-type inequalities on time scales
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [49] OSTROWSKI TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR MT-CONVEX FUNCTIONS
    Liu, Wenjun
    [J]. MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 249 - 256
  • [50] Weighted Ostrowski type inequalities for co-ordinated convex functions
    Budak, Huseyin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)