Grüss-type and Ostrowski-type inequalities in approximation theory

被引:0
|
作者
A. M. Acu
H. Gonska
I. Raşa
机构
[1] Lucian Blaga University of Sibiu,
[2] University of Duisburg-Essen,undefined
[3] Technical University,undefined
来源
关键词
Approximation Theory; Chebyshev Polynomial; Type Inequality; Interpolation Operator; Positive Linear Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the Grüss inequalities on spaces of continuous functions defined on a compact metric space. Using the least concave majorant of the modulus of continuity, we obtain the Grüss inequality for the functional L(f) = H(f; x), where H:C[a, b] → C[a, b] is a positive linear operator and x ∈ [a, b] is fixed. We apply this inequality in the case of known operators, e.g., the Bernstein operator, the Hermite–Fejér interpolation operator, and convolution-type operators. Moreover, we deduce Grüss-type inequalities using the Cauchy mean-value theorem, thus generalizing results of Chebyshev and Ostrowski. The Grüss inequality on a compact metric space for more than two functions is given, and an analogous Ostrowski-type inequality is obtained. The latter, in turn, leads to one further version of the Grüss inequality. In the appendix, we prove a new result concerning the absolute first-order moments of the classic Hermite–Fejér operator.
引用
收藏
页码:843 / 864
页数:21
相关论文
共 50 条
  • [1] Generalized Ostrowski–Grüss-type Inequalities
    Heiner Gonska
    Ioan Raşa
    Maria-Daniela Rusu
    [J]. Results in Mathematics, 2012, 62 : 311 - 318
  • [2] GRUSS-TYPE AND OSTROWSKI-TYPE INEQUALITIES IN APPROXIMATION THEORY
    Acu, A. M.
    Gonska, H.
    Rasa, I.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (06) : 843 - 864
  • [3] SOME GENERALIZED OSTROWSKI- AND OSTROWSKI-GRÜSS-TYPE INEQUALITIES ON FRACTAL SETS AND THEIR APPLICATIONS
    Liu, Haidong
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2024, 36 (01) : 77 - 88
  • [4] Berezin Number, Grüss-Type Inequalities and Their Applications
    Ulaş Yamancı
    Remziye Tunç
    Mehmet Gürdal
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2287 - 2296
  • [5] Generalized Ostrowski and Ostrowski-Grüss type inequalities
    Farid, Ghulam
    Mehmood, Sajid
    Younis, Bakri A.
    Ahamd, Huda Uones Mohamed
    Egami, Ria H.
    Adam, Ahmed M. Ibrahim
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024,
  • [6] On Multidimensional Ostrowski-Type Inequalities
    O. V. Kovalenko
    [J]. Ukrainian Mathematical Journal, 2020, 72 : 741 - 758
  • [7] On Multidimensional Ostrowski-Type Inequalities
    Kovalenko, O. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (05) : 741 - 758
  • [8] Grüss-Type Inequalities by Means of Generalized Fractional Integrals
    J. Vanterler da C. Sousa
    D. S. Oliveira
    E. Capelas de Oliveira
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 1029 - 1047
  • [9] Two-point Ostrowski and Ostrowski–Grüss type inequalities with applications
    Mohammad W. Alomari
    [J]. The Journal of Analysis, 2020, 28 : 623 - 661
  • [10] New generalization fractional inequalities of Ostrowski-Grüss type
    Sarikaya M.Z.
    Yaldiz H.
    [J]. Lobachevskii Journal of Mathematics, 2013, 34 (4) : 326 - 331