CoRe: Contrastive and Restorative Self-Supervised Learning for Surface Defect Inspection

被引:5
|
作者
Wu, Huangyuan [1 ]
Li, Bin [1 ]
Tian, Lianfang [1 ]
Sun, Zhengzheng [1 ]
Dong, Chao [2 ,3 ]
Liao, Wenzhi [4 ]
机构
[1] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Peoples R China
[2] Minist Nat Resources, Key Lab Marine Environm Survey Technol & Applicat, Guangzhou 510300, Peoples R China
[3] Southern Marine Sci & Engn, Guangdong Lab, Zhuhai 519000, Peoples R China
[4] Univ Ghent, Flanders Make, B-9000 Ghent, Belgium
基金
中国国家自然科学基金;
关键词
Defect inspection; machine vision; representation learning; self-supervised learning (SSL);
D O I
10.1109/TIM.2023.3291776
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visual inspection technology based on deep learning has achieved great success in surface defect inspection tasks. Most existing works transfer the learned knowledge from the natural dataset (e.g., ImageNet dataset) into the target tasks. However, the paradigm is suboptimal for defect inspection tasks due to: 1) the inherent dataset gap between natural and defect images and 2) the misalignment of task objectives. The limitations make the model cannot learn a generalized visual representation. To address the above issues, a contrastive and restorative self-supervised learning framework (CoRe) is proposed to learn general representation for the defect inspection task. Specifically, to bridge the dataset gap, we pretrain the model on the related dataset with a similar feature distribution instead of the natural dataset, which facilitates the representation learning of defect inspection tasks. Subsequently, to mitigate the task misalignment, the proposed method combines contrastive and restorative learning to excavate features required for the defect inspection task. The experimental results on five surface defect datasets demonstrate that our method outperforms the existing self-supervised learning (SSL) works, typical supervised pretraining paradigm, and some specific defect inspection methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Grouped Contrastive Learning of Self-Supervised Sentence Representation
    Wang, Qian
    Zhang, Weiqi
    Lei, Tianyi
    Peng, Dezhong
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [42] Contrastive self-supervised learning for neurodegenerative disorder classification
    Gryshchuk, Vadym
    Singh, Devesh
    Teipel, Stefan
    Dyrba, Martin
    ADNI Study Grp
    AIBL Study Grp
    FTLDNI Study Grp
    FRONTIERS IN NEUROINFORMATICS, 2025, 19
  • [43] Contrastive Self-Supervised Learning for Optical Music Recognition
    Penarrubia, Carlos
    Valero-Mas, Jose J.
    Calvo-Zaragoza, Jorge
    DOCUMENT ANALYSIS SYSTEMS, DAS 2024, 2024, 14994 : 312 - 326
  • [44] Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning
    Qiu, Shuang
    Wang, Lingxiao
    Bai, Chenjia
    Yang, Zhuoran
    Wang, Zhaoran
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [45] Similarity contrastive estimation for image and video soft contrastive self-supervised learning
    Denize, Julien
    Rabarisoa, Jaonary
    Orcesi, Astrid
    Herault, Romain
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [46] Investigating Contrastive Pair Learning's Frontiers in Supervised, Semisupervised, and Self-Supervised Learning
    Sabiri, Bihi
    Khtira, Amal
    EL Asri, Bouchra
    Rhanoui, Maryem
    JOURNAL OF IMAGING, 2024, 10 (08)
  • [47] Similarity contrastive estimation for image and video soft contrastive self-supervised learning
    Julien Denize
    Jaonary Rabarisoa
    Astrid Orcesi
    Romain Hérault
    Machine Vision and Applications, 2023, 34
  • [48] FundusNet, A self-supervised contrastive learning framework for Fundus Feature Learning
    Mojab, Nooshin
    Alam, Minhaj
    Hallak, Joelle
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [49] Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning
    Wen, Zixin
    Li, Yuanzhi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [50] Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
    Zheng, Yu
    Jin, Ming
    Liu, Yixin
    Chi, Lianhua
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12220 - 12233