Efficient activation of peroxymonosulfate-based Fenton-like system using CuCo2O4/g-C3N4 prepared by Cu+-Co2+ self-doped: g-C3N4 driven reduction-oxidation cycling mechanism of Cu and Co metals

被引:9
|
作者
Zhao, Yubo [1 ]
Deng, Xianhe [1 ]
Yang, Ying [1 ]
Zhang, Yanqiu [1 ]
Wang, Hong [1 ]
Xin, Baifu [1 ]
机构
[1] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Minist Educ, Harbin 150000, Peoples R China
来源
关键词
Fenton -like reaction; Permonosulfate; Bimetallic catalyst; Antibiotic degradation; CATALYTIC DEGRADATION; CARBON NITRIDE; AQUEOUS-SOLUTION; BISPHENOL-A; DECOMPOSITION; PERFORMANCE; NANOSHEET; NITROGEN; KINETICS; COFE2O4;
D O I
10.1016/j.jece.2023.110220
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A large specific surface area Cu+-Co2+ self-doped CuCo2O4/g-C3N4 composite was synthesized in situ by a simple hydrothermal combined calcination method. This material is a kind of highly active catalyst suitable for per-oxymonosulfate (PMS)-based Fenton-like system, with strong resistance to impurity ions interference, univer-sality to pollutants, and good recyclability. Through XRD (X-ray diffraction), FTIR (Fourier transform infrared spectrometer), XPS (X-ray photoelectron spectrum), TEM (transmission electron microscopy) and catalytic ex-periments, it can be seen that CuCo2O4 nanoparticles with diameter of 6-9 nm are uniformly distributed on the surface of g-C3N4 to form CuCo2O4/g-C3N4. At room temperature, PMS-based Fenton-like system catalyzed by CuCo2O4/g-C3N4 could degraded tetracycline (TC) to 85.8% in 8 min. The mechanism of CuCo2O4/g-C3N4 activating PMS was discussed in detail. The results show that the surface electron transfer ability of C in g-C3N4 can promote the efficient reduction-oxidation (REDOX) cycle of Cu+/Cu2+ and Co2+/Co3+ on the catalyst sur -face, thus provide a continuous impetus for the activation of PMS.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Selective degradation in Fenton-like reaction catalyzed by Na and Fe Co-doped g-C3N4 catalyst
    Meng, Suhang
    Nan, Zhaodong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 309
  • [22] Efficient and stable photocatalytic NO removal on C self-doped g-C3N4: electronic structure and reaction mechanism
    Ran, Maoxi
    Li, Jiarui
    Cui, Wen
    Li, Yuhan
    Li, Peidong
    Dong, Fan
    CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (13) : 3387 - 3394
  • [23] Preparation of Cu modified g-C3N4 nanorod bundles for efficiently photocatalytic CO2 reduction
    Wang, Libin
    Zang, Linlin
    Shen, Fengtong
    Wang, Jingzhen
    Yang, Zhiyu
    Zhang, Yanhong
    Sun, Liguo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 622 : 336 - 346
  • [24] Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4
    Huang, Qian
    Yu, Jiaguo
    Cao, Shaowen
    Cui, Can
    Cheng, Bei
    APPLIED SURFACE SCIENCE, 2015, 358 : 350 - 355
  • [25] Potassium-Doped g-C3N4 Achieving Efficient Visible-Light-Driven CO2 Reduction
    Wang, Shuhui
    Zhan, Jiawei
    Chen, Kui
    Ali, Asad
    Zeng, Linghui
    Zhao, He
    Hu, Wanglai
    Zhu, Lixin
    Xu, Xiaoliang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (22) : 8214 - 8222
  • [26] Efficient degradation of tetracycline by persulfate activation with Fe, Co and O co-doped g-C3N4: Performance, mechanism and toxicity
    Wu, Zhibin
    Tong, Zhijun
    Xie, Yuanyuan
    Sun, Haibo
    Gong, Xiaomin
    Qin, Pufeng
    Liang, Yunshan
    Yuan, Xingzhong
    Zou, Dongsheng
    Jiang, Longbo
    CHEMICAL ENGINEERING JOURNAL, 2022, 434
  • [27] Size Effect of Cu Nanoparticles in Cu/g-C3N4 Composites on Properties for Highly Efficient Photocatalytic Reduction of CO2 to Methanol
    Zhang, Huiliu
    Ren, Xingzhuang
    Zhang, Bing
    Jia, Aizhong
    Wang, Yanji
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (46) : 53515 - 53525
  • [28] g-C3N4 modified Co3O4 as efficient catalysts for aerobic oxidation of benzyl alcohol
    Jiequn Wu
    Weiming Hua
    Yinghong Yue
    Zi Gao
    Reaction Kinetics, Mechanisms and Catalysis, 2019, 128 : 109 - 120
  • [29] g-C3N4 modified Co3O4 as efficient catalysts for aerobic oxidation of benzyl alcohol
    Wu, Jiequn
    Hua, Weiming
    Yue, Yinghong
    Gao, Zi
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2019, 128 (01) : 109 - 120
  • [30] Efficient photocatalysis of Cu doped TiO2/g-C3N4 for the photodegradation of methylene blue
    Liyanaarachchi, Heshan
    Thambiliyagodage, Charitha
    Liyanaarachchi, Chamika
    Samarakoon, Upeka
    ARABIAN JOURNAL OF CHEMISTRY, 2023, 16 (06)