Preparation of Cu modified g-C3N4 nanorod bundles for efficiently photocatalytic CO2 reduction

被引:35
|
作者
Wang, Libin [1 ]
Zang, Linlin [2 ]
Shen, Fengtong [1 ]
Wang, Jingzhen [1 ]
Yang, Zhiyu [1 ]
Zhang, Yanhong [1 ]
Sun, Liguo [1 ]
机构
[1] Heilongjiang Univ, Sch Chem Engn & Mat, Harbin 150080, Peoples R China
[2] Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
关键词
g-C3N4; Cu modification; Chemical vapor co-deposition; Photocatalysis; CO(2)reduction; GRAPHITIC CARBON NITRIDE; ONE-STEP SYNTHESIS; ONE-POT SYNTHESIS; HETEROJUNCTION; NANOSHEETS; COMPOSITES; ASSEMBLIES; CATALYSTS; PHOTOREDUCTION; DEGRADATION;
D O I
10.1016/j.jcis.2022.04.099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nitride-based photocatalysts for CO2 reduction have received great attention. The introduction of transition metals can effectively improve the photocatalytic efficiency of carbon nitride. However, how to introduce transition metals into carbon nitride in more ways remains a challenge. Herein, the Cu modified g-C3N4 nanorod bundles (CCNBs) were prepared by chemical vapor co-deposition using the mixture of urea and chlorophyllin sodium copper salt as precursor. The prepared CCNBs exhibited excellent photocatalytic activity for CO2 reduction. The unique hierarchical structure was beneficial to enhance light harvesting. Besides, the introduction of uniformly dispersed Cu further improved the absorption capacity of visible light, increased active sites, and promoted the separation and transfer of carriers. The CO yield of CCNBs was 5 times higher than that of bulk g-C3N4, and showed excellent stability in cycle experiments. This work provides a strategy to prepare carbon nitride-based photocatalysts for efficient CO2 reduction. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:336 / 346
页数:11
相关论文
共 50 条
  • [1] Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction
    Alekseev, Roman F.
    Saraev, Andrey A.
    Kurenkova, Anna Yu.
    Kozlova, Ekaterina A.
    [J]. RUSSIAN CHEMICAL REVIEWS, 2024, 93 (05)
  • [2] Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
    Ye, Liqun
    Wu, Dan
    Chu, Ka Him
    Wang, Bo
    Xie, Haiquan
    Yip, Ho Yin
    Wong, Po Keung
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 376 - 383
  • [3] Photocatalytic Reduction of CO2 over Iron-Modified g-C3N4 Photocatalysts
    Edelmannova, Miroslava
    Reli, Martin
    Koci, Kamila
    Papailias, Ilias
    Todorova, Nadia
    Giannakopoulou, Tatiana
    Dallas, Panagiotis
    Devlin, Eamonn
    Ioannidis, Nikolaos
    Trapalis, Christos
    [J]. PHOTOCHEM, 2021, 1 (03): : 462 - 476
  • [4] TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance
    Wang, Huiqin
    Li, Hongda
    Chen, Zhuowen
    Li, Jinze
    Li, Xin
    Huo, Pengwei
    Wang, Qian
    [J]. SOLID STATE SCIENCES, 2020, 100
  • [5] NiO/g-C3N4 quantum dots for photocatalytic CO2 reduction
    Tao, Feifei
    Dong, Yali
    Yang, Lingang
    [J]. APPLIED SURFACE SCIENCE, 2023, 638
  • [6] g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction
    Sun, Zhuxing
    Wang, Haiqiang
    Wu, Zhongbiao
    Wang, Lianzhou
    [J]. CATALYSIS TODAY, 2018, 300 : 160 - 172
  • [7] A review on g-C3N4 for photocatalytic water splitting and CO2 reduction
    Ye, Sheng
    Wang, Rong
    Wu, Ming-Zai
    Yuan, Yu-Peng
    [J]. APPLIED SURFACE SCIENCE, 2015, 358 : 15 - 27
  • [8] Photocatalytic CO2 Reduction over g-C3N4 Based Materials
    Cai, Wei-Qin
    Zhang, Feng-Jun
    Kong, Cui
    Kai, Chun-Mei
    Oh, Won-Chun
    [J]. KOREAN JOURNAL OF MATERIALS RESEARCH, 2020, 30 (11): : 581 - 588
  • [9] Bimetal Cu and Fe modified g-C3N4 sheets grown on carbon skeleton for efficient and selective photocatalytic reduction of CO2 to CO
    Bian, Songyuan
    Li, Xueyan
    Zhang, Long
    Wang, Libin
    Wang, Jingzhen
    Xu, Qing
    Zang, Linlin
    Zhang, Yanhong
    Sun, Liguo
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [10] Synergy of dual single Ni and Co atoms on borate modified g-C3N4 for photocatalytic CO2 reduction
    Liu, Yang
    Qu, Binhong
    Zhang, Ziqing
    Sun, Jianhui
    Zhao, Xiaomeng
    Bai, Linlu
    Jing, Liqiang
    [J]. MATERIALS RESEARCH BULLETIN, 2022, 153