Totally Implantable Oxygen Generator (TIOG) for Hypoxia and Hypoxemia

被引:1
|
作者
Islam, Sayemul [1 ]
Huggins, Rebecca C. [1 ]
Almeseri, Abdulaziz N. A. E. [2 ]
Domic, Michael [2 ]
Song, Seung Hyun [3 ]
Polizzotti, Brian D. [4 ]
Kim, Albert [5 ,6 ]
机构
[1] Univ S Florida, Dept Med Engn, Tampa, FL USA
[2] Temple Univ, Elect & Comp Engn Dept, Philadelphia, PA USA
[3] SookMyung Womens Univ, Dept Elect Engn, Seoul, South Korea
[4] Boston Childrens Hosp, Dept Cardiol, Boston, MA USA
[5] Temple Univ, Tampa, FL 33606 USA
[6] Univ S Florida, Dept Med Engn, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
Low-power electronics; biomedical electronics; oxygen; implants; biomedical electrodes; biomedical transducers; biomedical telemetry; ELECTROLYSIS; MECHANISMS; DELIVERY; THERAPY; WATER;
D O I
10.1109/TBME.2022.3217164
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hypoxia and hypoxemia are the conditions when oxygen is depleted from the cell due to, for example, respiratory failure, cancer, etc. While the current therapy brought reasonable clinical outcomes, its systematic nature of oxygen delivery can be compromised by a significant dropout and side effects. This paper presents a totally implantable oxygen generator (TIOG) for localized, highly controllable, real-time, and targeted oxygen delivery. Methods: The TIOG system, an ultra-low power implantable wireless platform, is built using off-the-shelf components. The TIOG can be remotely operated to enable a tailored oxygen delivery based on electrolysis with a precisely controlled electrical signal (i.e., current level, frequency, and duty cycle). Results: The in vitro experiments demonstrate that the TIOG could deliver oxygen with a rate of 9.27 +/- 1.9 mu mol/L/min with the pulsed electrical current (800 mu A, 600 mu s pulse or 6% duty cycle with 10 ms period). The system could also suppress chlorine generation under the safety guideline (5 mg/L). Operating at 433 MHz ISM band, the TIOG could be wirelessly controlled from up to 600 cm distance with a 0%-bit error rate (BER) and 0%-packet error rate (PER). A single charge of the battery could operate the system for up to 3.3 hr, which can be wirelessly recharged for long-term operation. Conclusion: The longevity of the TIOG system enables ambulatory oxygen therapy in a much longer-term than current practice.
引用
收藏
页码:1380 / 1388
页数:9
相关论文
共 50 条
  • [31] Totally Implantable Active Middle Ear Implants
    Seidman, Michael D.
    Janz, Tyler A.
    Shohet, Jack A.
    OTOLARYNGOLOGIC CLINICS OF NORTH AMERICA, 2019, 52 (02) : 297 - +
  • [32] Totally implantable central venous access ports
    Jarosz, Jerzy
    Krzakowski, Maciej
    Dworzanski, Kazimierz
    Czech, Irena
    Filipczyk-Cisarz, Emilia
    Glogowska, Iwona
    Goraj, Elwira
    Gozdz, Stanislaw
    Jagiello-Gruszfeld, Agnieszka
    Kasalik, Grzegorz
    Komorowski, Andrzej
    Kosinski, Boguslaw
    Les, Jaroslaw
    Mankowski, Przemyslaw
    Matuszewska, Katarzyna
    Misiak, Malgorzata
    Mlynarski, Rafal
    Rajchert, Lukasz
    Rolski, Janusz
    Rubach, Maryna
    Sienkowska-Magon, Monika
    Sierko, Ewa
    Sobanska, Danuta
    Sobolewski, Bartosz
    Tujakowski, Jerzy
    Wojtukiewicz, Marek
    ONCOLOGY IN CLINICAL PRACTICE, 2006, 2 (01): : 40 - 48
  • [33] Malfunction of Totally Implantable Central Venous Ports
    Kim, Hyo-Cheol
    Hur, Saebeom
    Jeon, Hoyong
    IRANIAN JOURNAL OF RADIOLOGY, 2017, 14 (01)
  • [34] Update on totally implantable venous access devices
    Zaghal, Ahmad
    Khalife, Mohamed
    Mukherji, Deborah
    El Majzoub, Nadim
    Shamseddine, Ali
    Hoballah, Jamal
    Marangoni, Gabriele
    Faraj, Walid
    SURGICAL ONCOLOGY-OXFORD, 2012, 21 (03): : 207 - 215
  • [35] The totally implantable artificial heart:: A new stage
    Ménasché, P
    ARCHIVES DES MALADIES DU COEUR ET DES VAISSEAUX, 2003, 96 (10): : 933 - 933
  • [36] THE USE OF TOTALLY IMPLANTABLE VASCULAR ACCESS SYSTEMS
    BAGLEY, RS
    FLANDERS, JA
    COMPENDIUM ON CONTINUING EDUCATION FOR THE PRACTICING VETERINARIAN, 1990, 12 (01): : 22 - &
  • [37] Real-time measurement of tumour hypoxia using an implantable microfabricated oxygen sensor
    Marland, Jamie R. K.
    Gray, Mark E.
    Dunare, Camelia
    Blair, Ewen O.
    Tsiamis, Andreas
    Sullivan, Paul
    Gonzalez-Fernandez, Eva
    Greenhalgh, Stephen N.
    Gregson, Rachael
    Clutton, R. Eddie
    Parys, Magdalena M.
    Dyson, Alex
    Singer, Mervyn
    Kunkler, Ian H.
    Potter, Mark A.
    Mitra, Srinjoy
    Terry, Jonathan G.
    Smith, Stewart
    Mount, Andrew R.
    Underwood, Ian
    Walton, Anthony J.
    Argyle, David J.
    Murray, Alan F.
    SENSING AND BIO-SENSING RESEARCH, 2020, 30
  • [38] Evaluation of totally implantable catheters in healthy horses
    de Souza Garcia, Adriana Fernandes
    Ribeiro, Gesiane
    Arantes, Julia de Assis
    Reginato, Gustavo Morandini
    Xavier, Nathalia Villaca
    Carregaro, Adriano Bonfim
    Fernandes Silva, Thiago Jhonatha
    Grigoletto, Renan
    de Freitas, Silvio Henrique
    Sampaio Doria, Renata Gebara
    BMC VETERINARY RESEARCH, 2021, 17 (01)
  • [39] The remaining obstacles for a totally implantable cochlear implant
    Trudel, Mathieu
    Morris, David P.
    CURRENT OPINION IN OTOLARYNGOLOGY & HEAD AND NECK SURGERY, 2022, 30 (05): : 298 - 302
  • [40] TOTALLY IMPLANTABLE DIAPHRAGM PACEMAKER - EXPERIMENTAL STUDIES
    SATOH, I
    KANEYUKI, T
    FUJII, Y
    HOGAN, JF
    HOLCOMB, WG
    GLENN, WWL
    SURGICAL FORUM, 1976, 27 : 290 - 293