The stability estimates of the inverse problem for the weighted Radon transform

被引:2
|
作者
Li, Wei [1 ]
Xian, Jun [1 ]
Wang, Jinping [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
[2] Ningbo Univ, Sch Math & Stat, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
Hilbert space; Sobolev estimation; convolution; Riesz potential; weighted radon transform; RECONSTRUCTION; ALGORITHM; CONVERGENCE;
D O I
10.1080/00036811.2021.1994957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we get some new properties of the weighted Radon transform by Fourier transform, convolution, Riesz potential, and so on. Meanwhile, the results of Natterer are generalized to non-uniform attenuation. Furthermore we study the Sobolev estimation of the n-dimensional non-uniform attenuation Radon transform and its dual operator by the Young's inequality. Then, we extend conclusions of Rigaud and Lakhal to the n-dimensional space. Finally, the results of Sharafutdinov are generalized to non-uniform attenuation.
引用
收藏
页码:1673 / 1686
页数:14
相关论文
共 50 条
  • [21] STABILITY ESTIMATES IN AN INVERSE PROBLEM FOR THE TRANSPORT-EQUATION
    ROMANOV, VG
    DOKLADY AKADEMII NAUK, 1995, 341 (02) : 169 - 172
  • [22] Stability estimates of an inverse problem for the stationary transport equation
    Wang, JN
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1999, 70 (05): : 473 - 495
  • [23] Stability Estimates for the Inverse Problem of Finding the Absorption Constant
    D. I. Glushkova
    Differential Equations, 2001, 37 : 1261 - 1270
  • [24] Stability estimates for an inverse problem related to viscoelastic media
    Lorenzi, A.
    Romanov, V.G.
    Journal of Inverse and Ill-Posed Problems, 2006, 14 (01): : 57 - 82
  • [25] Stability estimates for an inverse scattering problem at high frequencies
    Ammari, Habib
    Bahouri, Hajer
    Ferreira, David Dos Santos
    Gallagher, Isabelle
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) : 525 - 540
  • [26] Radon Transform for Solving an Inverse Scattering Problem in a Planar Layered Acoustic Medium
    Baev, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (04) : 537 - 547
  • [27] Analysis of the weighted conical Radon transform
    Duy, Nguyen Ngoc
    JOURNAL OF PHYSICS COMMUNICATIONS, 2024, 8 (03):
  • [28] Radon Transform for Solving an Inverse Scattering Problem in a Planar Layered Acoustic Medium
    A. V. Baev
    Computational Mathematics and Mathematical Physics, 2018, 58 : 537 - 547
  • [29] A REMARK ON THE WEIGHTED RADON TRANSFORM ON THE PLANE
    Gindikin, Simon
    INVERSE PROBLEMS AND IMAGING, 2010, 4 (04) : 649 - 653
  • [30] Inverse radon transform for optoacoustic imaging
    Andreev, VG
    Popov, DA
    Sushko, DV
    Karabutov, AA
    Oraevsky, AA
    BIOMEDICAL OPTOACOUSTICS II, 2001, 4256 : 119 - 129