In this paper, we get some new properties of the weighted Radon transform by Fourier transform, convolution, Riesz potential, and so on. Meanwhile, the results of Natterer are generalized to non-uniform attenuation. Furthermore we study the Sobolev estimation of the n-dimensional non-uniform attenuation Radon transform and its dual operator by the Young's inequality. Then, we extend conclusions of Rigaud and Lakhal to the n-dimensional space. Finally, the results of Sharafutdinov are generalized to non-uniform attenuation.
机构:
Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Peoples R ChinaShaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
Li, Tian
Wu, Longyu
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R ChinaShaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
Wu, Longyu
Zhu, Quanxin
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Sch Math & Stat, Changsha 410081, Peoples R ChinaShaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
机构:
Univ Grenoble Alpes, UMR CNRS 5224, Lab Jean Kuntzmann, 700 Ave Cent, F-38401 St Martin Dheres, FranceUniv Grenoble Alpes, UMR CNRS 5224, Lab Jean Kuntzmann, 700 Ave Cent, F-38401 St Martin Dheres, France
Triki, Faouzi
Volkov, Darko
论文数: 0引用数: 0
h-index: 0
机构:
Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USAUniv Grenoble Alpes, UMR CNRS 5224, Lab Jean Kuntzmann, 700 Ave Cent, F-38401 St Martin Dheres, France