A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT

被引:12
|
作者
Abbas, Salam A. [1 ]
Bailey, Ryan T. [1 ]
White, Jeremy T. [2 ]
Arnold, Jeffrey G. [3 ]
White, Michael J. [3 ]
Cerkasova, Natalja [4 ]
Gao, Jungang [4 ]
机构
[1] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80521 USA
[2] INTERA Inc, Perth, Australia
[3] USDA ARS, Grassland Soil & Water Res Lab, Temple, TX 76502 USA
[4] Texas A&M AgriLife, Blackland Research & Extens Ctr, Temple, TX 76502 USA
基金
美国农业部;
关键词
ENSEMBLE SMOOTHER; DATA ASSIMILATION; WATER-QUALITY; QUANTIFICATION; CONDUCTIVITY; AREA; SOIL;
D O I
10.5194/hess-28-21-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Parameter sensitivity analysis plays a critical role in efficiently determining main parameters, enhancing the effectiveness of the estimation of parameters and uncertainty quantification in hydrologic modeling. In this paper, we demonstrate an uncertainty and sensitivity analysis technique for the holistic Soil and Water Assessment Tool (SWAT + ) model coupled with new gwflow module, spatially distributed, physically based groundwater flow modeling. The main calculated groundwater inflows and outflows include boundary exchange, pumping, saturation excess flow, groundwater-surface water exchange, recharge, groundwater-lake exchange and tile drainage outflow. We present the method for four watersheds located in different areas of the United States for 16 years (2000-2015), emphasizing regions of extensive tile drainage (Winnebago River, Minnesota, Iowa), intensive surface-groundwater interactions (Nanticoke River, Delaware, Maryland), groundwater pumping for irrigation (Cache River, Missouri, Arkansas) and mountain snowmelt (Arkansas Headwaters, Colorado). The main parameters of the coupled SWAT + gwflow model are estimated utilizing the parameter estimation software PEST. The monthly streamflow of holistic SWAT + gwflow is evaluated based on the Nash-Sutcliffe efficiency index (NSE), percentage bias (PBIAS), determination coefficient (R-2) and Kling-Gupta efficiency coefficient (KGE), whereas groundwater head is evaluated using mean absolute error (MAE). The Morris method is employed to identify the key parameters influencing hydrological fluxes. Furthermore, the iterative ensemble smoother (iES) is utilized as a technique for uncertainty quantification (UQ) and parameter estimation (PE) and to decrease the computational cost owing to the large number of parameters. Depending on the watershed, key identified selected parameters include aquifer specific yield, aquifer hydraulic conductivity, recharge delay, streambed thickness, streambed hydraulic conductivity, area of groundwater inflow to tile, depth of tiles below ground surface, hydraulic conductivity of the drain perimeter, river depth (for groundwater flow processes), runoff curve number (for surface runoff processes), plant uptake compensation factor, soil evaporation compensation factor (for potential and actual evapotranspiration processes), soil available water capacity and percolation coefficient (for soil water processes). The presence of gwflow parameters permits the recognition of all key parameters in the surface and/or subsurface flow processes, with results substantially differing if the base SWAT + models are utilized.
引用
收藏
页码:21 / 48
页数:28
相关论文
共 50 条
  • [21] Sensitivity analysis in parameter estimation
    Villalobos, A
    Collado, J
    Wagner, A
    COMPUTATIONAL METHODS IN SURFACE AND GROUND WATER TRANSPORT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES, VOL 2, 1998, 12 : 337 - 344
  • [22] MOESHA: A GENETIC ALGORITHM FOR AUTOMATIC CALIBRATION AND ESTIMATION OF PARAMETER UNCERTAINTY AND SENSITIVITY OF HYDROLOGIC MODELS
    Barnhart, B. L.
    Sawicz, K. A.
    Ficklin, D. L.
    Whittaker, G. W.
    TRANSACTIONS OF THE ASABE, 2017, 60 (04) : 1259 - 1269
  • [23] An integrated mechanistic modeling of a facultative pond: Parameter estimation and uncertainty analysis
    Ho, Long T.
    Alvarado, Andres
    Larriva, Josue
    Pompeu, Cassia
    Goethals, Peter
    WATER RESEARCH, 2019, 151 : 170 - 182
  • [24] ANALYSIS OF EFFECTS OF PARAMETER UNCERTAINTY IN DETERMINISTIC HYDROLOGIC-MODELS
    WOOD, EF
    WATER RESOURCES RESEARCH, 1976, 12 (05) : 925 - 932
  • [25] Dynamic modeling, sensitivity analysis and parameter estimation of industrial yeast fermenters
    Pertev, C
    Turker, M
    Berber, R
    COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 : S739 - S744
  • [26] Dynamic modeling, sensitivity analysis and parameter estimation of industrial yeast fermenters
    Department of Chemical Engineering, University of Ankara, Tandogan, 06100 Ankara, Turkey
    不详
    Comput Chem Eng, SUPPL. 1 (S739-S744):
  • [27] Sensitivity analysis of grating parameter estimation
    Logofatu, PC
    APPLIED OPTICS, 2002, 41 (34) : 7179 - 7186
  • [28] Parameter Identification in Population Balance Models Using Uncertainty and Sensitivity Analysis
    Sehrawat, Priyanka
    Sarkar, Debasis
    Kumar, Jitendra
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (25) : 8673 - 8684
  • [29] Parameter Identification in Population Balance Models Using Uncertainty and Sensitivity Analysis
    Sehrawat, Priyanka
    Sarkar, Debasis
    Kumar, Jitendra
    Industrial and Engineering Chemistry Research, 2022, 61 (25): : 8673 - 8684
  • [30] Stormwater Detention System Parameter Sensitivity and Uncertainty Analysis Using SWMM
    Knighton, James
    Lennon, Edward
    Bastidas, Luis
    White, Eric
    JOURNAL OF HYDROLOGIC ENGINEERING, 2016, 21 (08)