On the Continuity of the Solution Map of the Euler-Poincare Equations in Besov Spaces

被引:0
|
作者
Li, Min [1 ]
Liu, Huan [2 ]
机构
[1] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330032, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Poincare equations; Nowhere uniformly continuous; Besov spaces; Data-to-solution map; SHALLOW-WATER EQUATION; CAMASSA-HOLM; NONUNIFORM DEPENDENCE; WELL-POSEDNESS; ILL-POSEDNESS; INITIAL DATA; EXISTENCE; BREAKING; FAMILY;
D O I
10.1007/s00021-023-00778-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing a series of perturbation functions through localization in the Fourier domain and using a symmetric form of the system, we show that the data-to-solution map for the Euler-Poincare'equations is nowhere uniformly continuous in B-p,r(s)(R-d) with s > max{1+ d/2, 3/2 } and (p, r) ? (1, 8) x [1, 8). This improves our previous result (Li et al. in Nonlinear Anal RWA 63:103420, 2022) which shows the data-to-solution map for the Euler-Poincare' equations is non-uniformly continuous on a bounded subset of B-p,r(s)(R-d) near the origin.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Stochastic Euler-Poincare reduction
    Arnaudon, Marc
    Chen, Xin
    Cruzeiro, Ana Bela
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [22] A Euler-Poincare framework for the multilayer Green-Nagdhi equations
    Percival, J. R.
    Cotter, C. J.
    Holm, D. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (34)
  • [23] On the Cauchy problem for the two-component Euler-Poincare equations
    Duan, Renjun
    Xiang, Zhaoyin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (08) : 2698 - 2730
  • [24] Euler-Poincare Approaches to Nematodynamics
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    Tronci, Cesare
    ACTA APPLICANDAE MATHEMATICAE, 2012, 120 (01) : 127 - 151
  • [25] Euler-Poincare characteristics of abelian varieties
    Coates, J
    Sujatha, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (04): : 309 - 313
  • [26] Dissipation and controlled Euler-Poincare systems
    Woolsey, CA
    Bloch, AM
    Leonard, NE
    Marsden, JE
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 3378 - 3383
  • [27] On the theory of Besov–Herz spaces and Euler equations
    Lucas C. F. Ferreira
    J. E. Pérez-López
    Israel Journal of Mathematics, 2017, 220 : 283 - 332
  • [29] THE THEORY OF BRAUER AND THE EULER-POINCARE CHARACTERISTIC
    ILLUSIE, L
    ASTERISQUE, 1981, (82-8) : 161 - 172
  • [30] EQUIVARIANT EULER-POINCARE CHARACTERISTICS AND TAMENESS
    CHINBURG, T
    EREZ, B
    ASTERISQUE, 1992, (209) : 179 - 194