Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries

被引:36
|
作者
Zhang, Guangxu [1 ,2 ]
Wei, Xuezhe [1 ,2 ]
Chen, Siqi [1 ,2 ]
Wei, Gang [1 ,2 ]
Zhu, Jiangong [1 ,2 ]
Wang, Xueyuan [1 ,2 ]
Han, Guangshuai [3 ,4 ]
Dai, Haifeng [1 ,2 ]
机构
[1] Tongji Univ, Clean Energy Automot Engn Ctr, Shanghai 201804, Peoples R China
[2] Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
[3] Tongji Univ, Inst Adv Study, Shanghai 200092, Peoples R China
[4] Shanghai AI NEV Innovat Platform Co Ltd, Shanghai 201804, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; High-temperature aging; Thermal safety; Degradation; Lithium plating; RUNAWAY; POSTMORTEM; CELLS;
D O I
10.1016/j.jechem.2023.08.040
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries. This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging. Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging. Employing multi-angle characterization analysis, the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high temperature aging is clarified. Specifically, lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature. Additionally, the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature. Furthermore, the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate, ultimately indicating a decrease in the thermal hazards of aging batteries.CO 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:378 / 389
页数:12
相关论文
共 50 条
  • [21] Thermal Transients to Accelerate Cyclic Aging of Lithium-Ion Batteries
    Cloos, Lisa
    Queisser, Oliver
    Chahbaz, Ahmed
    Paarmann, Sabine
    Sauer, Dirk Uwe
    Wetzel, Thomas
    BATTERIES & SUPERCAPS, 2024, 7 (03)
  • [22] Electrolyte tailoring and interfacial engineering for safe and high-temperature lithium-ion batteries
    Shi, Chenyang
    Li, Zhengguang
    Wang, Mengran
    Hong, Shu
    Hong, Bo
    Fu, Yaxuan
    Liu, Die
    Tan, Rui
    Wang, Pingshan
    Lai, Yanqing
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (07) : 3248 - 3258
  • [23] Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review
    Yun, Shuhong
    Liang, Xinghua
    Xi, Junjie
    Liao, Leyu
    Cui, Shuwan
    Chen, Lihong
    Li, Siying
    Hu, Qicheng
    POLYMERS, 2024, 16 (18)
  • [24] Inhomogeneous Aging in Lithium-Ion Batteries Caused by Temperature Effects
    Paarmann, Sabine
    Schuld, Kathrin
    Wetzel, Thomas
    ENERGY TECHNOLOGY, 2022, 10 (11)
  • [25] Lithium difluoro(sulfato)borate as a novel electrolyte salt for high-temperature lithium-ion batteries
    Li, Shiyou
    Zhao, Wei
    Cui, Xiaoling
    Zhang, Hongming
    Wang, Xiuxiu
    Zhong, Wanxiang
    Feng, Huixia
    Liu, Haining
    ELECTROCHIMICA ACTA, 2014, 129 : 327 - 333
  • [26] Non-flammable Gel Polymer Electrolyte for Enhancing the Safety and High-Temperature Performance of Lithium-Ion Batteries
    Lim, Da-Ae
    Seok, Jin-Hong
    Hong, Dayoung
    Ahn, Kyoung Ho
    Lee, Chul Haeng
    Kim, Dong-Won
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (12) : 14822 - 14831
  • [27] Revealing the Impact of Slight Electrical Abuse on the Thermal Safety Characteristics for Lithium-Ion Batteries
    Zhang, Guangxu
    Wei, Xuezhe
    Chen, Siqi
    Zhu, Jiangong
    Han, Guangshuai
    Dai, Haifeng
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12858 - 12870
  • [28] Aging Mechanisms of Lithium-ion Batteries
    Seok, Jangwhan
    Lee, Wontae
    Lee, Hyunbeom
    Park, Sangbin
    Chung, Chanyou
    Hwang, Sunhyun
    Yoon, Won-Sub
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2024, 15 (01) : 51 - 66
  • [29] Lithium-Ion Batteries Aging Mechanisms
    Sgroi, Mauro Francesco
    BATTERIES-BASEL, 2022, 8 (11):
  • [30] Optimization of high-temperature thermal pretreatment conditions for maximum enrichment of lithium and cobalt from spent lithium-ion polymer batteries
    Gao, Lizhen
    Afreh, Paul
    Sidhoum, Ali
    Zhang, Weike
    Results in Engineering, 2024, 23