Artificial intelligence uses multi-omic data to predict pancreatic cancer outcomes

被引:2
|
作者
Osipov, Arsen [1 ]
Theodorescu, Dan [1 ]
机构
[1] Cedars Sinai Med Ctr, Los Angeles, CA 90048 USA
关键词
D O I
10.1038/s43018-023-00698-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We applied an artificial intelligence (AI) approach to a dataset of clinical and advanced multi-omic molecular features from patients with pancreatic adenocarcinoma to predict survival. The results reveal a tumor-type-agnostic platform that can identify parsimonious and robust clinical prediction biomarkers, catalyzing the vision to democratize precision oncology worldwide.
引用
收藏
页码:226 / 227
页数:2
相关论文
共 50 条
  • [41] Systemic Lupus Erythematosus Biomarkers Identified Using Multi-Omic and Artificial Intelligence Analysis through Interrogative Biology
    Grund, Eric
    Zhang, Lixia
    Rodrigues, Leonardo
    Akmaev, Viatcheslav
    Sarangarajan, Rangaprasad
    Kiebish, Michael
    Narain, Niven
    Gilkeson, Gary S.
    ARTHRITIS & RHEUMATOLOGY, 2018, 70
  • [42] Multi-omic molecular comparison of primary versus metastatic pancreatic tumours
    Brar, Gagandeep
    Blais, Edik M.
    Bender, R. Joseph
    Brody, Jonathan R.
    Sohal, Davendra
    Madhavan, Subha
    Picozzi, Vincent J.
    Hendifar, Andrew E.
    Chung, Vincent M.
    Halverson, David
    Mikhail, Sameh
    Matrisian, Lynn M.
    Rahib, Lola
    Petricoin, Emanuel
    Pishvaian, Michael J.
    BRITISH JOURNAL OF CANCER, 2019, 121 (03) : 264 - 270
  • [43] Multi-Omic Data Interpretation to Repurpose Subtype Specific Drug Candidates for Breast Cancer
    Turanli, Beste
    Karagoz, Kubra
    Bidkhori, Gholamreza
    Sinha, Raghu
    Gatza, Michael L.
    Uhlen, Mathias
    Mardinoglu, Adil
    Arga, Kazim Yalcin
    FRONTIERS IN GENETICS, 2019, 10
  • [44] Multi-omic molecular comparison of primary versus metastatic pancreatic tumours
    Gagandeep Brar
    Edik M. Blais
    R. Joseph Bender
    Jonathan R. Brody
    Davendra Sohal
    Subha Madhavan
    Vincent J. Picozzi
    Andrew E. Hendifar
    Vincent M. Chung
    David Halverson
    Sameh Mikhail
    Lynn M. Matrisian
    Lola Rahib
    Emanuel Petricoin
    Michael J. Pishvaian
    British Journal of Cancer, 2019, 121 : 264 - 270
  • [45] The Genome Conformation As an Integrator of Multi-Omic Data: Thie Example of Damage Spreading in Cancer
    Tordini, Fabio
    Aldinucci, Marco
    Milanesi, Luciano
    Lio, Pietro
    Merelli, Ivan
    FRONTIERS IN GENETICS, 2016, 7
  • [46] Integrating Multi-Omic Data With Deep Subspace Fusion Clustering for Cancer Subtype Prediction
    Yang, Bo
    Zhang, Yupei
    Pang, Shanmin
    Shang, Xuequn
    Zhao, Xueqing
    Han, Minghui
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (01) : 216 - 226
  • [47] Bayesian simultaneous factorization and prediction using multi-omic data
    Samorodnitsky, Sarah
    Wendt, Chris H.
    Lock, Eric F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 197
  • [48] Deep Learning and Networks for Integrative Analysis of Multi-Omic Data
    Zhang, Aidong
    2018 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2018,
  • [49] 'Multi-omic' data analysis using O-miner
    Sangaralingam, Ajanthah
    Ullah, Abu Z. Dayem
    Marzec, Jacek
    Gadaleta, Emanuela
    Nagano, Ai
    Ross-Adams, Helen
    Wang, Jun
    Lemoine, Nicholas R.
    Chelala, Claude
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (01) : 130 - 143
  • [50] Multi-omic approaches for host-microbiome data integration
    Chetty, Ashwin
    Blekhman, Ran
    GUT MICROBES, 2024, 16 (01)