Artificial intelligence uses multi-omic data to predict pancreatic cancer outcomes

被引:2
|
作者
Osipov, Arsen [1 ]
Theodorescu, Dan [1 ]
机构
[1] Cedars Sinai Med Ctr, Los Angeles, CA 90048 USA
关键词
D O I
10.1038/s43018-023-00698-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We applied an artificial intelligence (AI) approach to a dataset of clinical and advanced multi-omic molecular features from patients with pancreatic adenocarcinoma to predict survival. The results reveal a tumor-type-agnostic platform that can identify parsimonious and robust clinical prediction biomarkers, catalyzing the vision to democratize precision oncology worldwide.
引用
收藏
页码:226 / 227
页数:2
相关论文
共 50 条
  • [21] The challenges of integrating multi-omic data sets
    Bernhard Palsson
    Karsten Zengler
    Nature Chemical Biology, 2010, 6 : 787 - 789
  • [22] Multi-Omic Biomarkers as Potential Tools for the Characterisation of Pancreatic Cystic Lesions and Cancer: Innovative Patient Data Integration
    Kane, Laura E.
    Mellotte, Gregory S.
    Conlon, Kevin C.
    Ryan, Barbara M.
    Maher, Stephen G.
    CANCERS, 2021, 13 (04) : 1 - 23
  • [23] Multi-Omic Approaches to Classify, Predict, and Treat Acute Leukemias
    Hernandez-Valladares, Maria
    CANCERS, 2023, 15 (04)
  • [24] The Cancer Genomics Cloud enables complex and multi-omic data science in the cloud
    Ray, Manisha
    DiGiovanna, Jack
    Radenkovic, Jelena
    Tosic, Marko
    Mirkovic, Nikola
    Majic, Boris
    Andjus, Vladan
    Davis-Dusenbery, Brandi
    CANCER RESEARCH, 2020, 80 (16)
  • [25] Multi-omic integrated curvature study on pan-cancer genomic data
    Zhu, Jiening
    Tran, Anh Phong
    Deasy, Joseph O.
    Tannenbaum, Allen
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2024, 36 (01) : 101 - 120
  • [26] Multi-omic integrated curvature study on pan-cancer genomic data
    Jiening Zhu
    Anh Phong Tran
    Joseph O. Deasy
    Allen Tannenbaum
    Mathematics of Control, Signals, and Systems, 2024, 36 : 101 - 120
  • [27] Multi-omic molecular profiling of pancreatic neuroendocrine tumors.
    Patel, Rishi
    Bender, R. Joseph
    Li, Quanlin
    Pan, Dana
    Tuli, Richard
    Pishvaian, Michael J.
    Hendifar, Andrew Eugene
    JOURNAL OF CLINICAL ONCOLOGY, 2017, 35
  • [28] Cancer driver mutation prediction through Bayesian integration of multi-omic data
    Wang, Zixing
    Ng, Kwok-Shing
    Chen, Tenghui
    Kim, Tae-Beom
    Wang, Fang
    Shaw, Kenna
    Scott, Kenneth L.
    Meric-Bernstam, Funda
    Mills, Gordon B.
    Chen, Ken
    PLOS ONE, 2018, 13 (05):
  • [29] Multi-omic data integration in food science and analysis
    Herraiz-Gil, Sara
    del Carmen de Arriba, Maria
    Escamez, Maria J.
    Leon, Carlos
    CURRENT OPINION IN FOOD SCIENCE, 2023, 52
  • [30] OMICtools: an informative directory for multi-omic data analysis
    Henry, Vincent J.
    Bandrowski, Anita E.
    Pepin, Anne-Sophie
    Gonzalez, Bruno J.
    Desfeux, Arnaud
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2014,