Artificial intelligence uses multi-omic data to predict pancreatic cancer outcomes

被引:2
|
作者
Osipov, Arsen [1 ]
Theodorescu, Dan [1 ]
机构
[1] Cedars Sinai Med Ctr, Los Angeles, CA 90048 USA
关键词
D O I
10.1038/s43018-023-00698-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We applied an artificial intelligence (AI) approach to a dataset of clinical and advanced multi-omic molecular features from patients with pancreatic adenocarcinoma to predict survival. The results reveal a tumor-type-agnostic platform that can identify parsimonious and robust clinical prediction biomarkers, catalyzing the vision to democratize precision oncology worldwide.
引用
收藏
页码:226 / 227
页数:2
相关论文
共 50 条
  • [2] The Molecular Twin artificial-intelligence platform integrates multi-omic data to predict outcomes for pancreatic adenocarcinoma patients
    Arsen Osipov
    Ognjen Nikolic
    Arkadiusz Gertych
    Sarah Parker
    Andrew Hendifar
    Pranav Singh
    Darya Filippova
    Grant Dagliyan
    Cristina R. Ferrone
    Lei Zheng
    Jason H. Moore
    Warren Tourtellotte
    Jennifer E. Van Eyk
    Dan Theodorescu
    Nature Cancer, 2024, 5 : 299 - 314
  • [3] The Molecular Twin artificial-intelligence platform integrates multi-omic data to predict outcomes for pancreatic adenocarcinoma patients
    Osipov, Arsen
    Nikolic, Ognjen
    Gertych, Arkadiusz
    Parker, Sarah
    Hendifar, Andrew
    Singh, Pranav
    Filippova, Darya
    Dagliyan, Grant
    Ferrone, Cristina R.
    Zheng, Lei
    Moore, Jason H.
    Tourtellotte, Warren
    Van Eyk, Jennifer E.
    Theodorescu, Dan
    NATURE CANCER, 2024, 5 (02) : 299 - 314
  • [4] Applying Artificial Intelligence to Multi-Omic Data: New Functional Variants in Parkinson's Disease
    Welton, Thomas
    Tan, Eng-King
    MOVEMENT DISORDERS, 2021, 36 (02) : 347 - 347
  • [5] Methods for multi-omic data integration in cancer research
    Hernandez-Lemus, Enrique
    Ochoa, Soledad
    FRONTIERS IN GENETICS, 2024, 15
  • [6] Multi-omic artificial intelligence outcome modeling of ovarian cancer, phase I: Whole exome and whole transcriptome data.
    Orr, Brian
    Edwards, Robert P.
    Radolec, Mackenzy
    CANCER RESEARCH, 2022, 82 (12)
  • [7] Editorial: Multi-omic data integration
    Nardini, Christine
    Dent, Jennifer
    Tieri, Paolo
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2015, 3
  • [8] Multi-Omic Approaches in Colorectal Cancer beyond Genomic Data
    Sardo, Emilia
    Napolitano, Stefania
    Della Corte, Carminia Maria
    Ciardiello, Davide
    Raucci, Antonio
    Arrichiello, Gianluca
    Troiani, Teresa
    Ciardiello, Fortunato
    Martinelli, Erika
    Martini, Giulia
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (02):
  • [9] Integrative Analysis of Multi-Omic Data for the Characteristics of Endometrial Cancer
    Li, Tong
    Ruan, Zhijun
    Song, Chunli
    Yin, Feng
    Zhang, Tuanjie
    Shi, Liyun
    Zuo, Min
    Lu, Linlin
    An, Yuhao
    Wang, Rui
    Ye, Xiyang
    ACS OMEGA, 2024, 9 (12): : 14489 - 14499
  • [10] NEMO: cancer subtyping by integration of partial multi-omic data
    Rappoport, Nimrod
    Shamir, Ron
    BIOINFORMATICS, 2019, 35 (18) : 3348 - 3356