Linear plasma device GyM for plasma-material interaction studies

被引:9
|
作者
Uccello, Andrea [1 ]
Bin, William [1 ]
Bruschi, Alessandro [1 ]
Causa, Federica [1 ]
Cremona, Anna [1 ]
De Angeli, Marco [1 ]
Farina, Daniela [1 ]
Gatto, Giuseppe [1 ]
Gervasini, Gabriele [1 ]
Ghezzi, Francesco [1 ]
Gittini, Giuseppe [1 ]
Granucci, Gustavo [1 ]
Grosso, Giovanni [1 ]
Laguardia, Laura [1 ]
Lontano, Maurizio [1 ]
Mellera, Vittoria [1 ]
Minelli, Daniele [1 ]
Nardone, Antonio [1 ]
Pedroni, Matteo [1 ]
Ripamonti, Federico [1 ]
Rispoli, Natale [1 ]
Vassallo, Espedito [1 ]
Ricci, Daria [1 ]
机构
[1] CNR, Ist Sci & Tecnol Plasmi, Milan, Italy
关键词
nuclear fusion; tokamak; linear plasma device; GyM; plasma-facing components; plasma-material interaction; FLUX DEUTERIUM PLASMA; LOW-ENERGY; SURFACE-MORPHOLOGY; AMMONIA PRODUCTION; EROSION; RETENTION; PISCES; DUST; PSI-2; JET;
D O I
10.3389/fphy.2023.1108175
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
GyM is a linear plasma device operating at Istituto per la Scienza e Tecnologia dei Plasmi, Consiglio Nazionale delle Ricerche, Milan, with the original aim of studying basic plasma physics, such as turbulent processes. Since 2014, GyM experimental program has been mainly focused on the issue of plasma-material interaction (PMI) for magnetic confinement nuclear fusion applications. GyM consists of a stainless steel vacuum chamber (radius and length of 0.125 m and 2.11 m), a pumping system, a gas injection system, 10 magnetic field coils and two magnetron sources at 2.45 GHz, capable of delivering a total microwave power up to 4.5 kW. Highly reproducible steady-state plasmas of different gas species, at a maximum working pressure of & SIM; 1 0 - 1 Pa, can be obtained by electron cyclotron resonance heating in the resonance layer at 87.5 mT. Plasmas of GyM have electron and ion temperature & LE;15 eV and & SIM;0.1 eV, respectively. The electron density is in the range of 10(15)-10(17) m(-3) and the ion flux is <= 5 x 10(20) ions.m(-2)s(-1). Main plasma diagnostics of GyM comprise Langmuir probes, an optical emission spectrometer, a mass spectrometer and a fast camera system equipped with an image intensifier unit. For the purpose of investigating the topic of PMI, GyM is provided with two sample exposure systems. Both are biasable at a negative bias voltage down to -400 V, to tune the energy of the impinging ions. One of them is also equipped with a heating lamp and can reach and sustain a temperature of 990 K for several hours, thus allowing to study the role of sample temperature during the plasma-material interaction. This contribution presents the layout of GyM, the diagnostics, the sample exposure systems and the typical plasma parameters. A brief overview of the main PMI activities carried out so far and a description of future machine upgrades are also given.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Study of radiation from plasma-material interaction zone in disruption simulation experiments
    Litunovsky, VN
    Drozdov, AA
    Kuznetsov, VE
    Lyublin, BV
    Ovchinnikov, IB
    Titov, VA
    ICPP 96 CONTRIBUTED PAPERS - PROCEEDINGS OF THE 1996 INTERNATIONAL CONFERENCE ON PLASMA PHYSICS, VOLS 1 AND 2, 1997, : 1382 - 1385
  • [22] Study the erosion of Eurofer-97 steel with the linear plasma device GyM
    Uccello, Andrea
    Ghezzi, Francesco
    Kovac, Janez
    Ekar, Jernej
    Filipic, Tatjana
    Radovic, Iva Bogdanovic
    Dellasega, David
    Mellera, Vittoria
    Pedroni, Matteo
    Ricci, Daria
    GyM Team, GyM Team
    NUCLEAR MATERIALS AND ENERGY, 2023, 35
  • [23] Experiments in support of the Gas Dynamic Trap based facility for plasma-material interaction testing
    Soldatkina, E. I.
    Arakcheev, A. S.
    Bagryansky, P. A.
    FUSION ENGINEERING AND DESIGN, 2013, 88 (11) : 3084 - 3090
  • [24] Grid-free tree-code simulations of the plasma-material interaction region
    Salmagne, C.
    Reiter, D.
    Gibbon, P.
    JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP 2014, 2014, 561
  • [25] Taming the plasma-material interface with the 'snowflake' divertor in NSTX
    Soukhanovskii, V. A.
    Ahn, J-W.
    Bell, R. E.
    Gates, D. A.
    Gerhardt, S.
    Kaita, R.
    Kolemen, E.
    LeBlanc, B. P.
    Maingi, R.
    Makowski, M.
    Maqueda, R.
    McLean, A. G.
    Menard, J. E.
    Mueller, D.
    Paul, S. F.
    Raman, R.
    Roquemore, A. L.
    Ryutov, D. D.
    Sabbagh, S. A.
    Scott, H. A.
    NUCLEAR FUSION, 2011, 51 (01)
  • [26] Some problems of plasma-material interactions in fusion devices
    Glazunov, GP
    Volkov, ED
    Lapshin, VI
    Tereshin, VI
    Sadowski, M
    Langner, J
    Stanislawski, J
    NUKLEONIKA, 2000, 45 (03) : 209 - 213
  • [27] Editorial for achieving atomistic control in plasma-material interactions
    Oehrlein, Gottlieb S.
    Hamaguchi, Satoshi
    Von Keudell, Achim
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (49)
  • [28] Simulations of Argon plasmas in the linear plasma device GyM with the SOLPS-ITER code
    Sala, M.
    Tonello, E.
    Uccello, A.
    Bonnin, X.
    Ricci, D.
    Dellasega, D.
    Granucci, G.
    Passoni, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (05)
  • [29] Special Issue on Measuring and Modeling of Plasma-Material Interactions Preface
    Hammond, Karl D.
    Curreli, Davide
    Wirth, Brian D.
    Ruzic, David N.
    FUSION SCIENCE AND TECHNOLOGY, 2017, 71 (01) : III - IV
  • [30] Scientific and Computational Challenges in Coupled Plasma Edge/Plasma-Material Interactions for Fusion Tokamaks
    Brooks, J. N.
    Hassanein, A.
    Koniges, A.
    Krstic, P. S.
    Rognlien, T. D.
    Sizyuk, T.
    Sizyuk, V.
    Stotler, D. P.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2014, 54 (4-6) : 329 - 340