Applications of Nijenhuis Geometry IV: multicomponent KdV and Camassa-Holm equations

被引:0
|
作者
V. Bolsinov, Alexey V. [1 ]
Konyaev, Andrey Yu. [2 ,3 ]
Matveev, Vladimir S. [4 ]
机构
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, England
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119992, Russia
[3] Moscow Ctr Fundamental & Appl Math, Moscow 119992, Russia
[4] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
关键词
Multicomponent integrable PDE systems; Korteweg-de Vries equation; Camassa-Holm equation; Harry Dym equation; Nijenhuis operator; evolutionary flow; conservation laws and symmetries; CHAINS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a new series of multi-component integrable PDE systems that contains as particular examples (with appropriately chosen parameters) and generalises many famous integrable systems including KdV, coupled KdV [1], Harry Dym, coupled Harry Dym [2], Camassa-Holm, multi -component Camassa-Holm [14], Dullin-Gottwald-Holm and Kaup-Boussinesq systems. The series also contains integrable systems with no low-component analogues.
引用
收藏
页码:73 / 98
页数:26
相关论文
共 50 条
  • [31] DECAY ASYMPTOTICS OF THE VISCOUS CAMASSA-HOLM EQUATIONS IN THE PLANE
    Bjorland, Clayton
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 516 - 539
  • [32] Asymptotic Blowup Profiles for Modified Camassa-Holm Equations
    McLachlan, Robert I.
    Zhang, Xingyou
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (02): : 452 - 468
  • [33] Singularity tracking for Camassa-Holm and Prandtl's equations
    Della Rocca, Giulio
    Lombardo, Maria Carmela
    Sammartino, Marco
    Sciacca, Vincenzo
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (08) : 1108 - 1122
  • [34] Geometric Differences between the Burgers and the Camassa-Holm Equations
    Kolev, Boris
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 2) : 116 - 132
  • [35] On questions of decay and existence for the viscous Camassa-Holm equations
    Bjorland, Clayton
    Schonbek, Maria E.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (05): : 907 - 936
  • [36] Geometric Differences between the Burgers and the Camassa-Holm Equations
    Boris Kolev
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 116 - 132
  • [37] Camassa-Holm equations and vortexons for axisymmetric pipe flows
    Fedele, Francesco
    Dutykh, Denys
    FLUID DYNAMICS RESEARCH, 2014, 46 (01)
  • [38] The Cauchy problem for a family of generalized Camassa-Holm equations
    Tu, Xi
    Yin, Zhaoyang
    APPLICABLE ANALYSIS, 2016, 95 (06) : 1184 - 1213
  • [39] SMOOTH AND PEAKED SOLITONS OF THE CAMASSA-HOLM EQUATION AND APPLICATIONS
    Holm, Darryl
    Ivanov, Rossen
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2011, 22 : 13 - 49
  • [40] Global conservative and dissipative solutions of a coupled Camassa-Holm equations
    Tian, Lixin
    Wang, Yujuan
    Zhou, Jiangbo
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)