Applications of Nijenhuis Geometry IV: multicomponent KdV and Camassa-Holm equations

被引:0
|
作者
V. Bolsinov, Alexey V. [1 ]
Konyaev, Andrey Yu. [2 ,3 ]
Matveev, Vladimir S. [4 ]
机构
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, England
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119992, Russia
[3] Moscow Ctr Fundamental & Appl Math, Moscow 119992, Russia
[4] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
关键词
Multicomponent integrable PDE systems; Korteweg-de Vries equation; Camassa-Holm equation; Harry Dym equation; Nijenhuis operator; evolutionary flow; conservation laws and symmetries; CHAINS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a new series of multi-component integrable PDE systems that contains as particular examples (with appropriately chosen parameters) and generalises many famous integrable systems including KdV, coupled KdV [1], Harry Dym, coupled Harry Dym [2], Camassa-Holm, multi -component Camassa-Holm [14], Dullin-Gottwald-Holm and Kaup-Boussinesq systems. The series also contains integrable systems with no low-component analogues.
引用
收藏
页码:73 / 98
页数:26
相关论文
共 50 条
  • [21] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Lu ZHAO
    Changzheng QU
    ChineseAnnalsofMathematics,SeriesB, 2020, (03) : 407 - 418
  • [22] LOCAL AND GLOBAL ANALYTICITY FOR μ-CAMASSA-HOLM EQUATIONS
    Yamane, Hideshi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (07) : 4307 - 4340
  • [23] ON THE VISCOUS CAMASSA-HOLM EQUATIONS WITH FRACTIONAL DIFFUSION
    Gan, Zaihui
    Lin, Fanghua
    Tong, Jiajun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3427 - 3450
  • [24] ON THE FLUCTUATIONS OF WATER WAVES GOVERNED BY THE CAMASSA-HOLM AND KdV EQUATIONS IN (1+1)-DIMENSION
    Masoudi, A. A.
    Farahani, S. Vasheghani
    Azadi, Sam
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (02): : 149 - 158
  • [25] Gevrey class regularity for the viscous Camassa-Holm equations
    Yu, YJ
    Li, KT
    APPLIED MATHEMATICS LETTERS, 2005, 18 (06) : 713 - 719
  • [26] Well-posedness of modified Camassa-Holm equations
    McLachlan, Robert
    Zhang, Xingyou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) : 3241 - 3259
  • [27] Regularity of weak solutions for the fractional Camassa-Holm equations
    Yang, Jiaqi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [28] Decay characterization of solutions to the viscous Camassa-Holm equations
    Cung The Anh
    Pham Thi Trang
    NONLINEARITY, 2018, 31 (02) : 621 - 650
  • [29] Equations of Camassa-Holm type and Jacobi ellipsoidal coordinates
    Vaninsky, KL
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (09) : 1149 - 1187
  • [30] Criterion for Lyapunov stability of periodic Camassa-Holm equations
    Cao, Feng
    Chu, Jifeng
    Jiang, Ke
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (04) : 1557 - 1572