Thermal conductivity of glasses: first-principles theory and applications

被引:29
|
作者
Simoncelli, Michele [1 ]
Mauri, Francesco [2 ]
Marzari, Nicola [3 ,4 ]
机构
[1] Univ Cambridge, Cavendish Lab, Theory Condensed Matter Grp, Cambridge, England
[2] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy
[3] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MAR, Lausanne, Switzerland
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
BOLTZMANN TRANSPORT-EQUATION; FUSED-SILICA; 1ST PRINCIPLES; TEMPERATURE; QUARTZ; DYNAMICS; PHONONS; SYSTEMS; MODEL; HEAT;
D O I
10.1038/s41524-023-01033-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established Allen-Feldman and Green-Kubo approaches employ approximations with limited validity-the former neglects anharmonicity, the latter misses the quantum Bose-Einstein statistics of vibrations-and require atomistic models that are very challenging for first-principles methods. Here, we present a protocol to determine from first principles the thermal conductivity kappa(T) of glasses above the plateau (i.e., above the temperature-independent region appearing almost without exceptions in the kappa(T) of all glasses at cryogenic temperatures). The protocol combines the Wigner formulation of thermal transport with convergence-acceleration techniques, and accounts comprehensively for the effects of structural disorder, anharmonicity, and Bose-Einstein statistics. We validate this approach in vitreous silica, showing that models containing less than 200 atoms can already reproduce kappa(T) in the macroscopic limit. We discuss the effects of anharmonicity and the mechanisms determining the trend of kappa(T) at high temperature, reproducing experiments at temperatures where radiative effects remain negligible.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] First-principles study of lattice thermal conductivity of Td-WTe2
    Liu, Gang
    Sun, Hong Yi
    Zhou, Jian
    Li, Qing Fang
    Wan, Xian-Gang
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [42] Lattice dynamics and thermal conductivity of lithium fluoride via first-principles calculations
    Liang, Ting
    Chen, Wen-Qi
    Hu, Cui-E.
    Chen, Xiang-Rong
    Chen, Qi-Feng
    SOLID STATE COMMUNICATIONS, 2018, 272 : 28 - 32
  • [43] Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations
    Sun, Zhehao
    Yuan, Kunpeng
    Zhang, Xiaoliang
    Tang, Dawei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (48) : 30331 - 30339
  • [44] First-Principles Calculation of the Isotope Effect on Boron Nitride Nanotube Thermal Conductivity
    Stewart, Derek A.
    Savic, Ivana
    Mingo, Natalio
    NANO LETTERS, 2009, 9 (01) : 81 - 84
  • [45] First-principles study on ultralow lattice thermal conductivity in HfGeTe4
    Zhou, Xiu-Feng
    Zhou, Jian
    MODERN PHYSICS LETTERS B, 2022, 36 (23):
  • [46] Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations
    Zhou, Fei
    Nielson, Weston
    Xia, Yi
    Ozolins, Vidvuds
    PHYSICAL REVIEW LETTERS, 2014, 113 (18)
  • [47] Thermal conductivity and phonon hydrodynamics in transition metal dichalcogenides from first-principles
    Torres, Pol
    Xavier Alvarez, Francesc
    Cartoixa, Xavier
    Rurali, Riccardo
    2D MATERIALS, 2019, 6 (03):
  • [48] Thermal conductivity of hexagonal BC2P - a first-principles study
    Muthaiah, Rajmohan
    Tarannum, Fatema
    Annam, Roshan Sameer
    Nayal, Avinash Singh
    Danayat, Swapneel
    Garg, Jivtesh
    RSC ADVANCES, 2020, 10 (70) : 42628 - 42632
  • [49] Strain effects on the lattice thermal conductivity of monolayer CrOCl: A first-principles study
    Yu, Ben-Yu
    Sun, Yang
    Cao, Xinrui
    Zhu, Zi-Zhong
    Wu, Shunqing
    Lu, Tie-Yu
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [50] Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations
    Liu, Gang
    Wang, Haifeng
    Gao, Yan
    Zhou, Jian
    Wang, Hui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (04) : 2843 - 2849