Thermal conductivity of glasses: first-principles theory and applications

被引:29
|
作者
Simoncelli, Michele [1 ]
Mauri, Francesco [2 ]
Marzari, Nicola [3 ,4 ]
机构
[1] Univ Cambridge, Cavendish Lab, Theory Condensed Matter Grp, Cambridge, England
[2] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy
[3] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MAR, Lausanne, Switzerland
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
BOLTZMANN TRANSPORT-EQUATION; FUSED-SILICA; 1ST PRINCIPLES; TEMPERATURE; QUARTZ; DYNAMICS; PHONONS; SYSTEMS; MODEL; HEAT;
D O I
10.1038/s41524-023-01033-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established Allen-Feldman and Green-Kubo approaches employ approximations with limited validity-the former neglects anharmonicity, the latter misses the quantum Bose-Einstein statistics of vibrations-and require atomistic models that are very challenging for first-principles methods. Here, we present a protocol to determine from first principles the thermal conductivity kappa(T) of glasses above the plateau (i.e., above the temperature-independent region appearing almost without exceptions in the kappa(T) of all glasses at cryogenic temperatures). The protocol combines the Wigner formulation of thermal transport with convergence-acceleration techniques, and accounts comprehensively for the effects of structural disorder, anharmonicity, and Bose-Einstein statistics. We validate this approach in vitreous silica, showing that models containing less than 200 atoms can already reproduce kappa(T) in the macroscopic limit. We discuss the effects of anharmonicity and the mechanisms determining the trend of kappa(T) at high temperature, reproducing experiments at temperatures where radiative effects remain negligible.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Thermal conductivity of diamond under extreme pressure: A first-principles study
    Broido, D. A.
    Lindsay, L.
    Ward, A.
    PHYSICAL REVIEW B, 2012, 86 (11)
  • [22] Thermal Conductivity of Solids from First-Principles Molecular Dynamics Calculations
    Tse, John S.
    English, Niall J.
    Yin, Ketao
    Iitaka, T.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (20): : 10682 - 10690
  • [23] Electrical and thermal conductivity of liquid sodium from first-principles calculations
    Pozzo, Monica
    Desjarlais, Michael P.
    Alfe, Dario
    PHYSICAL REVIEW B, 2011, 84 (05):
  • [24] Spectral concentration of thermal conductivity in GaN-A first-principles study
    Garg, Jivtesh
    Luo, Tengfei
    Chen, Gang
    APPLIED PHYSICS LETTERS, 2018, 112 (25)
  • [25] Understanding the thermal conductivity of Diamond/Copper composites by first-principles calculations
    Chen, Liang
    Chen, Shuangtao
    Hou, Yu
    CARBON, 2019, 148 : 249 - 257
  • [26] Thermal conductivity of WC: Microstructural design driven by first-principles simulations
    Humphry-Baker, Samuel A.
    Mellan, Thomas A.
    Finnis, Mike
    Polcik, Peter
    Lee, William E.
    Reece, Mike
    Grasso, Salvatore
    ACTA MATERIALIA, 2025, 283
  • [27] First-Principles Study of Lattice Thermal Conductivity in SnSe Bilayer and Trilayer
    Li, Wentao
    Yang, Chenxiu
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2024, 261 (06):
  • [28] Tunable thermal conductivity of ternary alloy semiconductors from first-principles
    De Santiago, Francisco
    Raya-Moreno, Marti
    Miranda, Alvaro
    Cruz-Irisson, Miguel
    Cartoixa, Xavier
    Rurali, Riccardo
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (33)
  • [29] First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?
    Lindsay, L.
    Broido, D. A.
    Reinecke, T. L.
    PHYSICAL REVIEW LETTERS, 2013, 111 (02)
  • [30] Thermal Conductivity of Rutile and Anatase TiO2 from First-Principles
    Torres, Pol
    Rurali, Riccardo
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (51): : 30851 - 30855